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Understanding neural activity organization is vital for deciphering brain function. By recording whole-brain12

calcium activity in larval zebrafish during hunting and spontaneous behaviors, we find that the shape of the13

neural activity space, described by the neural covariance spectrum, is scale-invariant: a smaller, randomly14

sampled cell assembly resembles the entire brain. This phenomenon can be explained by Euclidean15

Random Matrix theory, where neurons are reorganized from anatomical to functional positions based on16

their correlations. Three factors contribute to the observed scale invariance: slow neural correlation decay,17

higher functional space dimension, and neural activity heterogeneity. In addition to matching data from18

zebrafish and mice, our theory and analysis demonstrate how the geometry of neural activity space evolves19

with population sizes and sampling methods, thus revealing an organizing principle of brain-wide activity.20
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1 Introduction23

Geometric analysis of neuronal population activity has revealed the fundamental structures of neural representations24

and brain dynamics (1–4). Dimensionality reduction methods, which identify collective or latent variables in neural25

populations, simplify our view of high-dimensional neural data (5). Their applications to optical and multi-electrode26

recordings have begun to reveal important mechanisms by which neural cell assemblies process sensory information27

(6, 7), make decisions (8, 9), maintain working memory (10) and generate motor behaviors (1, 11–13).28

29

In the past decade, the number of neurons that can be simultaneously recorded in vivo has grown exponentially30

(11, 14–21). This increase spans various brain regions (6, 16, 22) and the entire mammalian brain (23, 24). As31

more neurons are recorded, the multidimensional neural activity space, with each axis representing a neuron’s32

activity level (Fig. 1A), becomes more complex. The changing size of observed cell assemblies raises a number33

of basic questions. How does this space’s geometry evolve and what structures remain invariant with increasing34

number of neurons recorded? A key measure, the effective dimension or participation ratio (denoted as DPR,35

Fig. 1B), captures a major part of variability in neural activity (25–29). How does DPR vary with the number of36

sampled neurons (Fig. 1A)? Two scenarios are possible: DPR grows continuously with more sampled neurons; DPR37

saturates as the sample size increases. Which scenario fits the brain? Furthermore, even if two cell assemblies38

have the same DPR, they can have different shapes (the geometric configuration of the neural activity space, as39

dictated by the eigenspectrum of the covariance matrix, Fig. 1C). How does the shape vary with the number of40

neurons sampled? Lastly, are we going to observe the same picture of neural activity space when using different41

recording methods such as two-photon microscopy, which records all neurons in a brain region, versus Neuropixels42

(16), which conducts a broad random sampling of neurons?43

44

Here, we aim to address these questions by analyzing brain-wide Ca2+ activity in larval zebrafish during45
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2.1 Geometry of neural activity across random cell assemblies in zebrafish brain

hunting or spontaneous behavior (Fig. 2A) recorded by Fourier light-field microscopy (30). The small size of this46

vertebrate brain, together with the volumetric imaging method, enables us to capture a significant amount of47

neural activity across the entire brain simultaneously. To characterize the geometry of neural activity beyond its48

dimensionality DPR, we examine the eigenvalues or spectrum of neural covariance (31) (Fig. 1C). The covariance49

spectrum has been instrumental in offering mechanistic insights into neural circuit structure and function, such as50

the effective strength of local recurrent interactions and the depiction of network motifs (29, 31, 32). Intriguingly, we51

find that both the dimensionality and covariance spectrum remain invariant for cell assemblies that are randomly52

selected from various regions of the zebrafish brain. We also verify this observation in datasets recorded by different53

experimental methods, including light-sheet imaging of larval zebrafish (33), two-photon imaging of mouse visual54

cortex (23), and multi-area Neuropixels recording in the mouse (23). To explain the observed phenomenon, we55

model the covariance matrix of brain-wide activity by generalizing the Euclidean Random Matrix (ERM) (34) such56

that neurons correspond to points distributed in a d-dimensional functional or feature space, with pairwise correlation57

decaying with distance. The ERM theory, studied in theoretical physics (34, 35), provides extensive analytical tools58

for a deep understanding of the neural covariance matrix model, allowing us to unequivocally identify three crucial59

factors for the observed scale invariance.60

61

Building upon our theoretical results, we further explore the connection between the spatial arrangement of62

neurons and their locations in functional space, which allows us to distinguish among three sampling approaches:63

random sampling, anatomical sampling (akin to optical recording of all neurons within a specific region of the64

brain) and functional sampling (20). Our ERM theory makes distinct predictions regarding the scaling relationship65

between dimensionality and the size of cell assembly, as well as the shape of covariance eigenspetrum under66

various sampling methods. Taken together, our results offer a new perspective for interpreting brain-wide activity67

and unambiguously show its organizing principles, with unexplored consequences for neural computation.68

2 Results69

2.1 Geometry of neural activity across random cell assemblies in zebrafish brain70

We recorded brain-wide Ca2+ activity at a volume rate of 10 Hz in head-fixed larval zebrafish (Fig. 2A) during hunting71

attempts (Methods) and spontaneous behavior using a Fourier light field microscopy (30). Approximately 2000 ROIs72

(1977.3 ± 677.1, mean ± SD) with a diameter of 16.84 ± 8.51 µm were analyzed per fish based on voxel activity73

(Methods). These ROIs likely correspond to multiple nearby neurons with correlated activity. Henceforth, we refer to74

the ROIs as "neurons" for simplicity.75

76

We first investigate the dimensionality of neural activity DPR (Fig. 1B) in a randomly chosen cell assembly in77

zebrafish, similar to multi-area Neuropixels recording in a mammalian brain. We focus on how DPR changes with78

a large sample size N . We find that if the mean squared covariance remains finite instead of vanishing with N ,79

the dimensionality DPR (Fig. 1B) becomes sample size independent and depends only on the variance σ2
i and the80

covariance Cij between neurons i and j:81

lim
N→∞

DPR = E(σ2
i )2

Ei ̸=j(C2
ij)
, (1)

where E(...) denotes average across neurons (Methods and (29)). The finite mean squared covariance condition is82

supported by the observation that the neural activity covariance Cij is positively biased and widely distributed with a83

long tail (Fig. S2A). As predicted, the data dimensionality grows with sample size and reaches the maximum value84

specified by Eq. (1) (Fig. 2D).85

86

Next, we investigate the shape of the neural activity space described by the eigenspectrum of the covariance87

matrix derived from the activity of N randomly selected neurons (Fig. 2C). When the eigenvalues are arranged in88

descending order and plotted against the normalized rank r/N , where r = 1, . . . ,N , (we refer to it as the rank plot),89

this curve shows an approximate power law that spans 10 folds. Interestingly, as the size of the covariance matrices90

decreases (N decreases), the eigenspectrum curves nearly collapse over a wide range of eigenvalues. This pattern91

holds across diverse datasets and experimental techniques (Fig. 2F, Fig. S2E-L). The similarity of the covariance92

matrices of randomly sampled neural populations can be intuitively visualized (Fig. 2E), after properly sorting the93

neurons (Methods).94

95

The scale invariance in the neural covariance matrix – the collapse of the covariance eigenspectrum under96

random sampling – is non-trivial. The spectrum is not scale-invariant in a common covariance matrix model based97
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2.1 Geometry of neural activity across random cell assemblies in zebrafish brain

Figure 1. The relationship between the geometric properties of the neural activity space and the size of neural
assemblies. A. Illustration of how dimensionality of neural activity (DPR) changes with the number of recorded neurons. B. The
eigenvalues of the neural covariance matrix dictate the geometrical configuration of the neural activity space with

√
λi being the

distribution width along a principal axis. C. Examples of two neural populations with identical dimensionality (DPR = 25/11 ≈ 2.27)
but different spatial configurations, as revealed by the eigenvalue spectrum (green: {λi} = {7,7,1}, blue: {λi} = {9,3,3}).
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2.2 Modeling covariance by organizing neurons in functional space

on independent noise (Fig. 2G). It is absent when replacing the neural covariance matrix eigenvectors with random98

ones, keeping the eigenvalues identical (Fig. 2H). A recurrent neural network with random connectivity (31) does99

not yield a scale-invariant covariance spectrum (Fig. 2I). A recently developed latent variable model (36) (Fig. S23),100

which is able to reproduce avalanche criticality, also fails to generate the scale-invariant covariance spectrum. Thus,101

a new model is needed for the covariance matrix of neural activity.102

2.2 Modeling covariance by organizing neurons in functional space103

Dimension reduction methods simplify and visualize complex neuron interactions by embedding them into a104

low-dimensional map, within which nearby neurons have similar activities. Inspired by these ideas, we use the105

Euclidean Random Matrix (ERM (34)) to model neural covariance. Imagine sprinkling neurons uniformly distributed106

on a d-dimensional functional space of size L (Fig. 3A), where the distance between neurons i and j affects their107

correlation. Let x⃗i represent the functional coordinate of the neuron i. The distance-correlation dependency is108

described by kernel function f(x⃗i− x⃗j)> 0 with f(0) = 1, indicating closer neurons have stronger correlations, and109

decreases as distance ∥x⃗i− x⃗j∥ increases (Fig. 3A and Methods). To model the covariance, we extend the ERM110

by incorporating heterogeneity of neuron activity levels (shown as the size of the neuron in the functional space in111

Fig. 3A)112

Cij = σiσjf(x⃗i− x⃗j), i, j = 1,2, . . . ,N. (2)

The variance of neural activity σ2
i is drawn i.i.d. from a given distribution and is independent of neurons’ position.113

114

This multidimensional functional space may represent attributes to which neurons are tuned, such as sensory115

features (e.g., visual orientation (37), auditory frequency) and movement characteristics (e.g., direction, speed116

(38, 39)). In sensory systems, it represents stimuli as neural activity patterns, with proximity indicating similarity in117

features. For motor control, it encodes movement parameters and trajectories. In the hippocampus, it represents118

the place field of a place cell, acting as a cognitive map of physical space (40–42).119

120

We first explore the ERM with various forms of f(x⃗) and find that fast-decaying functions like Gaussian and121

exponential functions do not produce eigenspectra similar to the data and no scale invariance over random sampling122

(Fig. S4A-H and Supp. Note). Thus, we turn to slow-decaying functions including the power law, which produce123

spectra similar to the data (Fig. 3C,D; see also Fig. S5). We adopt a particular kernel function because of124

its closed-form and analytical properties: f(x⃗) = ϵµ(ϵ2 + ∥x⃗∥2)−µ/2 (Methods). For large distance ∥x⃗∥ ≫ ϵ, it125

approximates a power law f(x⃗) ≈ ϵµ∥x⃗∥−µ and smoothly transitions at small distance to satisfy the correlation126

requirement f(0) = 1 (Fig. S7I, J).127

2.3 Analytical theory on the conditions of scale invariance in ERM128

To determine the conditions for scale invariance in ERM, we analytically calculate the eigenspectrum of covariance129

matrix C (Eq. (2)) for large N,L using the replica method (34). A key order parameter emerging from this calculation130

is the neuron density ρ :=N/Ld. In the high-density regime ρϵd ≈ 1, the covariance spectrum can be approximated131

in a closed form (Methods). For the slow-decaying kernel function f(x⃗) defined above, the spectrum for large132

eigenvalues follows a power law (Supp. Note):133

λ∼ (r/N)−1+ µ
d ρ

µ
d ,

and equivalently p(λ) ∼ ρ
µ

d−µλ
− 2d−µ

d−µ ,
(3)

where r is the rank of the eigenvalues in descending order and p(λ) is their probability density function. Eq. (3)134

intuitively explains the scale invariance over random sampling. Sampling in the ERM reduces the neuron density135

ρ. The eigenspectrum is ρ-independent whenever µ/d ≈ 0. This indicates two factors contributing to the scale136

invariance of the eigenspectrum. First, a small exponent µ in the kernel function f(x⃗) means that pairwise137

correlations slowly decay with functional distance and can be significantly positive across various functional modules138

and throughout the brain. For a given µ, an increase in dimension d improves the scale invariance. The dimension139

d could represent the number of independent features or latent variables describing neural activity or cognitive states.140

141

We verify our theoretical predictions by comparing sampled eigenspectra in finite-size simulated ERMs across142

different µ and d (Fig. 4A). We first consider the case of homogeneous neurons (σ2
i ≡ 1 in Eq. (2), revisited later)143

in these simulations (Fig. 3C, D and Fig. 4A), making C ’s entries correlation coefficients. To quantitatively assess144

the level of scale invariance, we introduce a collapse index (CI, see Methods for a detailed definition). Motivated145

by Eq. (3), the CI measures the shift of the eigenspectrum when the number of sampled neurons changes. The146
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2.3 Analytical theory on the conditions of scale invariance in ERM

Figure 2. Whole-brain calcium imaging of zebrafish neural activity and the phenomenon of its scale-invariant covariance
eigenspectrum. A. Rapid light-field Ca2+ imaging system for whole brain neural activity in larval zebrafish. B. Inferred firing
rate activity from the brain-wide calcium imaging. The ROIs are sorted by their weights in the first principal component (23). C.
Procedure of calculating the covariance spectrum on the full and sampled neural activity matrices. D. Dimensionality (circles,
average across 8 samplings (dots)), as a function of the sampling fraction. The curve is the predicted dimensionality using
Eq. (5). E. Iteratively sampled covariance matrices. Neurons are sorted in each matrix to maximize values near the diagonal.
F. The covariance spectra, i.e., eigenvalue vs. rank/N, for randomly sampled neurons of different sizes (colors). The gray dots
represent the sorted variances Cii of all neurons. G to I. Same as F but from three models of covariance (see details in Methods):
(G) a Wishart random matrix calculated from a random activity matrix of the same size as the experimental data; (H) replacing
the eigenvectors by a random orthogonal set; (I) covariance generated from a randomly connected recurrent network.
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2.3 Analytical theory on the conditions of scale invariance in ERM

Figure 3. ERM model of covariance and its eigenspectrum. A. Schematic of the Euclidean Random Matrix (ERM) model,
which reorganizes neurons (circles) from the anatomical space to the functional space (here d = 2 is a two-dimensional box). The
correlation between a pair of neurons decreases with their distance in the functional space according to a kernel function f(x⃗).
This correlation is then scaled by neurons’ variance σ2

i (circle size) to obtain the covariance Cij . B. An example ERM correlation
matrix (i.e., when σ2

i ≡ 1). C. Spectrum (same as Fig. 2F) for the ERM correlation matrix in B. The gray dots represent the sorted
variances Cii of all neurons (same as in Fig. 2F). D. Visualizing the distribution of the same ERM eigenvalues in C by plotting the
probability density function (pdf).
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2.3 Analytical theory on the conditions of scale invariance in ERM

smaller CI values indicate higher scale invariance. Intuitively, it is defined as the area between spectrum curves147

from different sample sizes (Fig. 4A upper right). In the log-log scale rank plot, Eq. (3) shows the spectrum shifts148

vertically with ρ. Thus, we define CI as this average displacement (Fig. 4A upper right, Methods), and a smaller CI149

means more scale-invariant. Using CI, Fig. 4A shows that scale invariance improves with slower correlation decay150

as µ decreases and the functional dimension d increases. Conversely, with large µ and small d, the covariance151

eigenspectrum varies significantly with scale (Fig. 4A).

Figure 4. Three factors contributing to scale invariance. A. Impact of µ and d (see text) on the scale invariance of ERM
spectrum (same plots as Fig. 3C) with f(x⃗) = ϵµ(ϵ2 + ∥x⃗∥2)−µ/2. The degree of scale invariance is quantified by the collapse
index (CI), which essentially measures the area between different spectrum curves (upper right inset). For comparison, we fix
the same coordinate range across panels hence some plots are cropped. The gray dots represent the sorted variances Cii of
all neurons (same as in Fig. 2F). B. Top: sampled correlation matrix spectrum in an example animal (fish 1). Bottom: Same
as top but for the covariance matrix that incorporates heterogeneous variances. The gray dots represent the sorted variances
Cii of all neurons (same as in Fig. 2F). C. The CI of the correlation matrix (filled squares) is found to be larger than that for
the covariance matrix (opened squares) across different datasets: f1 to f6: six light-field zebrafish data (10 Hz per volume, this
paper); fl: light-sheet zebrafish data (2 Hz per volume, (33)); mn: mouse Neuropixels data (downsampled to 10 Hz per volume);
mp: mouse two-photon data, (3 Hz per volume, (23)).

152

153

Next, we consider the general case of unequal neural activity levels σ2
i and check for differences between154

the correlation (equivalent to σ2
i ≡ 1) and covariance matrix spectra. Using the collapsed index (CI), we compare155

the scale invariance of the two spectra in the experimental data. Intriguingly, the CI of the covariance matrix156

is consistently smaller (more scale-invariant) across all datasets (Fig. 4C, Fig. S6C, open vs. closed squares),157

indicating that the heterogeneity of neuronal activity variances significantly affects the eigenspectrum and the158

geometry of neural activity space (43). By extending our spectrum calculation to the intermediate density regime159

ρϵd ≪ 1 (Methods), we show that the ERM model can quantitatively explain the improved scale invariance in the160

covariance matrix compared to the correlation matrix (Fig. S6B).161

162

Lastly, we examine factors that turn out to have minimal impact on the scale invariance of the covariance163

spectrum. First, the shape of the kernel function f(x⃗) over a small distance (small distance means f(x) near x = 0164

in the functional space, Fig. S7) does not affect the distribution of large eigenvalues (Fig. S7, table S3, Fig. S9A).165

This supports our use of a specific f(x⃗) to represent a class of slow-decaying kernels. Second, altering the spatial166
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2.4 Connection among random sampling, functional sampling, and anatomical sampling

distribution of neurons in the functional space, whether using a Gaussian, uniform, or clustered distribution, does167

not affect large covariance eigenvalues, except possibly the leading ones (Fig. S9B, Methods). Third, different168

geometries of the functional space, such as a flat square, a sphere, or a hemisphere, result in eigenspectra similar169

to the original ERM model (Fig. S9C). These findings indicate that our theory for the covariance spectrum’s scale170

invariance is robust to various modeling details.171

2.4 Connection among random sampling, functional sampling, and anatomical sampling172

So far, we have focused on random sampling of neurons, but how does the neural activity space change with173

different sampling methods? To this end, we consider three methods (Fig. 5A1): random sampling (RSap),174

anatomical sampling (ASap) where neurons in a brain region are captured by optical imaging (6, 44, 45), and175

functional sampling (FSap) where neurons are selected based on activity similarity (20). In ASap or FSap, sampling176

involves expanding regions of interest in anatomical space or functional space while measuring all neural activity177

within those regions (Methods). The difference among sampling methods depends on the neuron organization178

throughout the brain. If anatomically localized neurons also cluster functionally (Fig. 5A4), ASap ≈ FSap; if they179

are spread in the functional space (Fig. 5A2), ASap ≈ RSap. Generally, the anatomical-functional relationship is180

in-between and can be quantified using the Canonical Correlation Analysis (CCA). This technique finds axes (CCA181

vectors v⃗anat and v⃗func) in anatomical and functional spaces such that the neurons’ projection along these axes182

has the maximum correlation,RCCA. The extreme scenarios described above correspond toRCCA = 1 andRCCA = 0.183

184

To determine the anatomical-functional relationship in neural data, we infer the functional coordinates x⃗i of185

each neuron by fitting the ERM using multidimensional scaling (MDS) (46) (Methods). For simplicity and better186

visualization, we use a low-dimensional functional space where d = 2. The fitted functional coordinates confirm187

the slow decay kernel function in ERM except for a small distance (Fig. S12). The ERM with inferred coordinates188

x⃗i also reproduces the experimental covariance matrix, including cluster structures (Fig. S11) and its sampling189

eigenspectra (Fig. S10).190

191

Equipped with the functional and anatomical coordinates, we next use CCA to determine which scenarios192

illustrated in Fig. 5A align better with the neural data. Fig. 5B,C shows a representative fish with a significant193

RCCA = 0.327 (p-value=0.0042, Anderson–Darling test). Notably, the CCA vector in the anatomical space, v⃗anat,194

aligns with the rostrocaudal axis. Coloring each neuron in the functional space by its projection along v⃗anat shows195

a correspondence between clustering and anatomical coordinates (Fig. 5B). Similarly, coloring neurons in the196

anatomical space (Fig. 5C) by their projection along v⃗func reveals distinct localizations in regions like the forebrain197

and optic tectum. Across animals, functionally clustered neurons show anatomical segregation (33), with an average198

RCCA of 0.335±0.054 (mean±SD).199

200

Next, we investigate the effects of different sampling methods (Fig. 5A1) on the geometry of the neural activity space201

when there is a significant but moderate anatomical-functional correlation as in the experimental data. Interestingly,202

dimensionality DASap
PR in data under anatomical sampling consistently falls between random and functional sampling203

values (Fig. 5D). This phenomenon can be intuitively explained by the ERM theory. Recall that for large N , the key204

term in Eq. (1) is Ei ̸=j(C2
ij). For a fixed number of sampled neurons, this average squared covariance is maximized205

when neurons are selected closely in the functional space (FSap) and minimized when distributed randomly (RSap).206

Thus, RSap and FSap DPR set the upper and lower bounds of dimensionality, with ASap expected to fall in between.207

This reasoning can be precisely formulated to obtain quantitative predictions of the bounds (Methods). We predict208

the ASap dimension at large N as209

DASap
PR ≈ (1−R2

ASap +k2R2
ASap)µ/dDPR. (4)

Here DPR is the dimensionality under RSap (Eq. (1)), k represents the fraction of sampled neurons. RASap is the210

correlation between anatomical and functional coordinates along the direction where the anatomical subregions are211

divided (Methods), and it is bounded by the canonical correlation RASap ≤RCCA. When RASap = 0, we get the upper212

bound DASap
PR =DPR (Fig. 5D dashed line). The lower bound is reached when RASap = RCCA = 1 (Fig. 5A4), where213

Eq. (4) shows a scaling relationship DASap
PR = DFSap

PR ∼ k2µ/dDPR that depends on the sampling fraction k (Fig. 5D214

solid line). This contrasts with the k-independent dimensionality of RSap in Eq. (1). Furthermore, if RASap and its215

upper bound is not close to 1 (precisely RASap ≤ 0.84 for the ERM model in Fig. 5D), DASap
PR align closer to the upper216

bound of RSap. This prediction agrees well with our observations in data across animals (Fig. 5D, Fig. S20 and217

Fig. S21).218

219
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2.4 Connection among random sampling, functional sampling, and anatomical sampling

Figure 5. The relationship between the functional and anatomical space and theoretical predictions. A. Three sampling
methods (A1) and RCCA (see text). When RCCA ≈ 0 (A2), the anatomical sampling (ASap) resembles the random sampling
(RSap), and while when RCCA ≈ 1 (A4), ASap is similar to the functional sampling (FSap). B. Distribution of neurons in the
functional space inferred by MDS. Each neuron is color-coded by its projection along the first canonical direction v⃗anat in the
anatomical space (see text). Data based on fish 6, same for C to E. C. Similar to B. but plotting neurons in the anatomical
space with color based on their projection along v⃗func in the functional space (see text). D. Dimensionality (DPR) across sampling
methods: average DPR under RSap (circles), average and individual brain region DPR under ASap (squares and dots), and DPR

under FSap for the most correlated neuron cluster (triangles; Methods). Dashed and solid lines are theoretical predictions for
DPR under RSap and FSap, respectively (Methods). E. The CI of correlation matrices under three sampling methods in 6 animals
(colors). **p<0.01; ***p<0.001; one-sided paired t tests: RSap vs. ASap, p = 0.0010; RSap vs. FSap, p = 0.0004; ASap vs.
FSap, p = 0.0014.
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2.4 Connection among random sampling, functional sampling, and anatomical sampling

Beyond dimensionality, our theory predicts the difference in the covariance spectrum between sampling methods220

based on the neuronal density ρ in the functional space (Eq. (3)). This density ρ remains constant during FSap221

(Fig. 5A1) and decreases under RSap; the average density across anatomical regions ⟨ρ⟩ in ASap lies between222

those of FSap and RSap. Analogous to Eq. (4), the relationship in ρ orders the spectra: ASap’s spectrum lies223

between those of FSap and RSap (Methods). This further implies that the level of scale invariance under ASap224

should fall between that of RSap and FSap, which is confirmed by our experimental data (Fig. 5E).225

3 Discussion226

Impact of hunting behavior on scale invariance and functional space organization227

How does task-related neural activity shape the covariance spectrum and brain-wide functional organization? We228

examine the hunting behavior in larval zebrafish, marked by eye convergence (both eyes move inward to focus on229

the central visual field) (47). We find that scale invariance of the eigenspectra persists and is enhanced even after230

removing the hunting frames from the Ca2+ imaging data (Fig. 4C, Fig. S15AB, Methods). This is consistent with the231

scale-invariant spectrum found in other data sets during spontaneous behaviors (Fig. S10F, Fig. S2GH), suggesting232

scale invariance is a general phenomenon.233

234

Interestingly, in the inferred functional space, we observe reorganizations of neurons after removing hunting235

behavior (Fig. S15C, D). Neurons in one cluster disperse from their center of mass (Fig. S15D) and decreases236

the local neuronal density ρ (Methods and Fig. S15E). The neurons in this dispersed cluster have a consistent237

anatomical distribution from the midbrain to the hindbrain in 4 out of 5 fish (Fig. S17). During hunting, the cluster238

has robust activations that are widespread in the anatomical space but localized in the functional space(Movie. S1).239

240

Our findings suggest that the functional space could be defined by latent variables that represent cognitive241

factors such as decision-making, memory, and attention. These variables set the space’s dimensions, with neural242

activity patterns reflecting cognitive state dynamics. Functionally related neurons – through sensory tuning,243

movement parameters, internal conditions, or cognitive factors – become closer in this space, leading to stronger244

activity correlations.245

Criticality and power law246

What drives brain dynamics with a slow-decaying distance-correlation function f(x⃗) in functional space? Long-range247

connections and a slow decline in projection strength over distance (48) may cause extensive correlations, enhancing248

global activity patterns. This behavior is also reminiscent of phase transitions in statistical mechanics (49), where249

local interactions lead to expansive correlated behaviors. Studies suggest that critical brains optimize information250

processing (50, 51). The link between neural correlation structures and neuronal connectivity topology is an exciting251

area for future exploration.252

253

In the high-density regime of the ERM model, the rank plot (Eq. (3)) for large eigenvalues (λ > 1) follows a254

power law λ∼ r−α, with α = 1 −µ/d < 1. The scale invariant spectrum occurs when α is close to 1. Experimental255

data, however, align more closely with the model in the intermediate-density regime, where the power-law spectrum256

is an approximation and the decay is slower (for ERM model Fig. S3BC, and for data α = 0.47 ± 0.08, mean±SD,257

n= 6 fish). Stringer et al. (6) found an α ≳ 1 decay in the mouse visual cortex’s stimulus trial averaged covariance258

spectrum, and they argued that this decay optimizes visual code efficiency and smoothness. Our study differs in two259

fundamental ways. First, we recorded brain-wide activity during spontaneous or hunting behavior, calculating neural260

covariance from single-trial activity. Much of the neural activity was not driven by sensory stimulus and unrelated261

to specific tasks, requiring a different interpretation of the neural covariance spectrum. Second, without loss of262

generality, we normalized the mean variance of neural activity E(σ2) by scaling the covariance matrix so that its263

eigenvalues sum up to N . This normalization imposes a constraint on the spectrum. In particular, large and small264

eigenvalues may have different behaviors and do not need to obey a single power law λ∼ r−α for all N eigenvalues265

(Methods). Stringer et al. (6) did not take this possibility into account, making their theory less applicable to our266

analysis.267

268

We draw inspiration from the renormalization group (RG) approach to navigate neural covariance across269

scales, which has also been explored in the recent literature. Following Kadanoff’s block spin transformation270

(49), Meshulam et al. (20) formed size-dependent neuron clusters and their covariance matrices by iteratively271

pairing the most correlated neurons and placing them adjacent on a lattice. The groups expanded until the largest272

reached the system size. The RG process, akin to spatial sampling in functional space (FSap), maintains constant273
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2.4 Connection among random sampling, functional sampling, and anatomical sampling

neuron density ρ. Thus, for any kernel function f(x⃗), including the power law and exponential, the covariance274

eigenspectrum remains invariant across scales (Fig. S19A,B,D,E).275

276

Morrell et al. (36, 52) proposed a simple model in which a few time-varying latent factors impact the whole277

neural population. We evaluated if this model could account for the scale invariance seen in our data. Simulations278

showed that the resulting eigenspectra differed considerably from our findings (Fig. S23). Although the Morrell279

model demonstrated a degree of scale invariance under functional sampling (or RG), it did not align with the280

scale-invariant features under random sampling, suggesting that this simple model might not capture all crucial281

features in our observations.282

283

We emphasize that the covariance spectrum being a power law is distinct from the scale invariance we define in this284

study, namely the collapse of spectrum curves under random neuron sampling. The random RNN model in Fig. 2I285

shows a power-law behavior, but lacks true scale invariance as spectrum curves for different sizes do not collapse.286

When connection strength g approaches 1, the system exhibits a power law spectrum of λ∝
(
r
N

)− 3
2 . Subsampling287

causes the spectrum to shift by λ∝ k− 1
2
(
r
N

)− 3
2 , where k =Ns/N is the sampling fraction (derived from Eq. 24 in288

(31)).289

Bounded dimensionality under random sampling290

The saturation of the dimensionality DPR at large sample sizes indicates a limit to neural assembly complexity,291

evidenced by the finite mean square covariance. This is in contrast with neural dynamics models such as the292

balanced excitatory-inhibitory (E-I) neural network (53), where Ei ̸=j(C2
ij) ∼ 1/N resulting in an unbounded293

dimensionality (see Supp. Note). Our results suggest that the brain encodes experiences, sensations, and thoughts294

using a finite set of dimensions instead of an infinitely complex neural activity space.295

296

We found that the relationship between dimensionality and the number of recorded neurons depends on the sampling297

method. For functional sampling, the dimensionality scales with the sampling fraction k: DFSap
PR ∼ k2µ/dDPR. This298

suggests that if anatomically sampled neurons are functionally clustered, as with cortical neurons forming functional299

maps, the increase in dimensionality with neuron number may seem unbounded. This offers new insights for300

interpreting large-scale neural activity data recorded under various techniques.301

302

Manley et al. (54) found that, unlike in our study, neural activity dimensionality in head-fixed, spontaneously303

behaving mice did not saturate. They used shared variance component analysis (SVCA) and noted that PCA-based304

estimates often show dimensionality saturation, which is consistent with our findings. We intentionally chose PCA in305

our study for several reasons. First, PCA is a trusted and widely used method in neuroscience, proven to uncover306

meaningful patterns in neural data. Second, its mathematical properties are well understood, making it particularly307

suitable for our theoretical analysis. Although newer methods such as SVCA might offer valuable insights, we308

believe PCA remains the most appropriate method for our research questions.309

310

It’s important to note that the scale invariance of dimensionality and covariance spectrum are distinct phenomena311

with different underlying requirements. Dimensionality invariance relies on finite mean square covariance, causing312

saturation at large sample sizes. In contrast, spectral invariance requires a slow-decaying correlation kernel (small313

µ) and/or a high-dimensional functional space (large d). Although both features appear in our data, they result314

from distinct mechanisms. A neural system could show saturating dimensionality without spectral invariance if it315

has finite mean square covariance but rapidly decaying correlations with functional distance. Understanding these316

requirements clarifies how neural organization affects different scale-invariant properties.317

Computational benefits of a scale-invariant covariance spectrum318

Our findings are validated across multiple datasets obtained through various recording techniques and animal319

models, ranging from single-neuron calcium imaging in larval zebrafish to single-neuron multi-electrode recordings320

in the mouse brain (see Fig. S2). The conclusion remains robust when the multi-electrode recording data are321

reanalyzed under different sampling rates (6 Hz - 24 Hz, Fig. S24). We also confirm that substituting a few negative322

covariances with zero retains the spectrum of the data covariance matrix (Fig. S18 and Methods).323

324

The scale invariance of neural activity across different neuron assembly sizes could support efficient multiscale325

information encoding and processing. This indicates that the neural code is robust and requires minimal adjustments326

despite changes in population size. One recent study shows that randomly sampled and coarse-grained macrovoxels327

can predict population neural activity (55), reinforcing that a random neuron subset may capture overall activity328
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4.1 Experimental methods

patterns. This enables downstream circuits to readout and process information through random projections329

(27). A recent study demonstrates that a scale-invariant noise covariance spectrum with a specific slope α < 1330

enables neurons to convey unlimited stimulus information as the population size increases (56). The linear Fisher331

information, in this context, grows at least as N1−α.332

333

Understanding how dimensionality and spectrum change with sample size also suggests the possibility of334

extrapolating from small samples to overcome experimental limitations. This is particularly feasible when µ/d → 0,335

where the dimensionality and spectrum under anatomical, random, and functional sampling coincide (Equations (3)336

and (4)). Developing extrapolation methods and exploring the benefits of scale-invariant neural code are promising337

future research directions.338

4 Materials and Methods339

4.1 Experimental methods340

The handling and care of the zebrafish complied with the guidelines and regulations of the Animal Resources Center341

of the University of Science and Technology of China (USTC). All larval zebrafish (huc:h2b -GCaMP6f) were raised342

in E2 embryo medium (comprising 7.5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO4, 0.075 mM KH2PO4, 0.025 mM343

Na2HPO4, 0.5 mM CaCl2, and 0.35 mM NaHCO3; containing 0.5 mg/L methylene blue) at 28.5 °C and with a 14-h344

light and 10-h dark cycle.345

346

To induce hunting behavior (composed of motor sequences like eye convergence and J turn) in larval zebrafish,347

we fed them a large amount of paramecia over a period of 4-5 days post-fertilization (dpf). The animals were348

then subjected to a 24-hour starvation period, after which they were transferred to a specialized experimental349

chamber. The experimental chamber was 20mm in diameter and 1mm in depth, and the head of each zebrafish350

was immobilized by applying 2% low melting point agarose. The careful removal of the agarose from the eyes and351

tail of the fish ensured that these body regions remained free to move during hunting behavior. Thus, characteristic352

behavioral features such as J-turns and eye convergence could be observed and analyzed. Subsequently, the353

zebrafish were transferred to an incubator and stayed overnight. At 7 dpf, several paramecia were introduced in354

front of the previously immobilized animals, each of which was monitored by a stereomicroscope. Those displaying355

binocular convergence were selected for subsequent Ca2+ imaging experiments.356

357

We developed a novel optomagnetic system that allows (1) precise control of the trajectory of the paramecium358

and (2) imaging brain-wide Ca2+ activity during the hunting behavior of zebrafish. To control the movement of the359

paramecium, we treated these microorganisms with a suspension of ferric tetroxide for 30 minutes and selected360

those that responded to its magnetic attraction. A magnetic paramecium was then placed in front of a selected larva,361

and its movement was controlled by changing the magnetic field generated by Helmholtz coils that were integrated362

into the imaging system. The real-time position of the paramecium, captured by an infrared camera, was identified363

by online image processing. The positional vector relative to a predetermined target position was calculated. The364

magnitude and direction of the current in the Helmholtz coils were adjusted accordingly, allowing for precise control365

of the magnetic field and hence the movement of the paramecium. Multiple target positions could be set to drive the366

paramecium back and forth between multiple locations.367

368

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types of behavior:369

induced hunting behavior by a moving paramecium in front of a fish (fish 1-5), and spontaneous behavior without370

any visual stimulus as a control (fish 6). Experiments were carried out at ambient temperature (ranging from 23°C to371

25°C). The behavior of the zebrafish was monitored by a high-speed infrared camera (Basler acA2000-165umNIR,372

0.66x) behind a 4F optical system and recorded at 50 Hz. Brain-wide Ca2+ imaging was achieved using XLFM.373

Light-field images were acquired at 10 Hz, using customized LabVIEW software (National Instruments, USA) or374

Solis software (Oxford Instruments, UK), with the help of a high-speed data acquisition card (PCIe-6321, National375

Instruments, USA) to synchronize the fluorescence with behavioral imaging.376

4.1.1 Behavior analysis. The background of each behavior video was removed using the clone stamp tool in Adobe377

Photoshop CS6. Individual images were then processed by an adaptive thresholding algorithm, and fish head and378

yolk were selected manually to determine the head orientation. The entire body centerline, extending from head379

to tail, was divided into 20 segments. The amplitude of a bending segment was defined as the angle between the380

segment and the head orientation. To identify the paramecium in a noisy environment, we subtracted a background381

image, averaged over a time window of 100 s, from all the frames. The major axis of the left or right eye was identified382

using DeepLabCut (57). The eye orientation was defined as the angle between the rostrocaudal axis and the major383
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4.1 Experimental methods

Notation Description

C covariance matrix, Eq. (2)

Cij pairwise covariance between neuron i, j; entries of C, section 4.3

DPR participation ratio dimension, Eq. (5)

DASap
PR anatomical sampling dimension, Eq. (4)

λ eigenvalue of a covariance matrix C

p(λ) probability density function of covariance eigenvalues, Eq. (8)

r rank of an eigenvalue in descending order, Eq. (3)

q fraction of eigenvalues up to λ and q = r/N , Eq. (13)

f(x⃗) = f(∥x⃗i− x⃗j∥) kernel function or distance-correlation function, Eq. (11)

f̃(k⃗) Fourier transform of f(x⃗), f̃(k⃗) =
∫
Rd f(x⃗)e−ix⃗·⃗kddx⃗

µ power-law exponent in f(x⃗), Eq. (11)

ϵ resolution parameter in f(x⃗) to smooth the singularity near 0, Eq. (11)

N number of neurons

N0 the total number of neurons prior to sampling

k N/N0 the fraction of sampled neurons

L linear box size of the functional space

ρ density of neurons in the functional space

d dimension of the functional space

ai(t) neural activity of neuron i at time t

σ2
i temporal variance of neural activity, Eq. (2)

CI collapse index for measuring scale invariance Eq. (13)

α power-law coefficient of eigenspectrum in the rank plot, section 3

x⃗i, y⃗i neuron i’s coordinate in the functional and anatomical space, respectively

v⃗func, v⃗anat the first canonical directions in the functional and anatomical space, respectively, section 2.4

RCCA the first canonical correlation, section 2.4

RASap correlation between anatomical and functional coordinates along ASap direction

Table S1. Table of notations.

axis of an eye; The convergence angle was defined as the angle between the major axes of the left and right eyes.384

An eye-convergence event was defined as a period of time where the angle between the long axis of the eyes stayed385

above 50 degrees (47).386

4.1.2 Imaging data acquisition and processing. We used a fast eXtended light field microscope (XLFM, with a volume387

rate of 10 Hz) to record Ca2+ activity throughout the brain of head-fixed larval zebrafish. Fish were ordered by388

the dates of experiments. As previously described (30), we adopted the Richardson-Lucy deconvolution method389

to iteratively reconstruct 3D fluorescence stacks (600 × 600 × 250) from the acquired 2D images (2048 × 2048).390

This algorithm requires an experimentally measured point spread function (PSF) of the XLFM system. The entire391

recording for each fish is 15.3±4.3 min (mean±SD).392

393
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4.2 Other experimental datasets analyzed

To perform image registration and segmentation, we first cropped and resized the original image stack to394

400 x 308 x 210, which corresponded to the size of a standard zebrafish brain (zbb) atlas (58). This step aimed395

to reduce substantial memory requirements and computational costs in subsequent operations. Next, we picked396

a typical volume frame and aligned it with the zbb atlas using a basic 3D affine transformation. This transformed397

frame was used as a template. We aligned each volume with the template using rigid 3D intensity-based398

registration (59) and non-rigid pairwise registration (60) in the Computational Morphometry Toolkit (CMTK)399

(https://www.nitrc.org/projects/cmtk/). After voxel registration, we computed the pairwise correlation400

between nearby voxel intensities and performed the watershed algorithm on the correlation map to cluster and401

segment voxels into consistent ROIs across all volumes. We defined the diameter of each ROI using the maximum402

Feret diameter (the longest distance between any two voxels within a single ROI).403

404

Finally, we adopted the "OASIS" deconvolution method to denoise and infer neural activity from the fluorescence405

time sequence (61). The deconvolved ∆F/F of each ROI was used to infer firing rates for subsequent analysis.406

4.2 Other experimental datasets analyzed407

Dataset Data Reference
Light-sheet imaging of larval zebrafish
(33)

https://janelia.figshare.com/articles/
dataset/Whole-brain_light-sheet_imaging_
data/7272617

Neuropixels recordings in mice (23) https://janelia.figshare.com/articles/
dataset/Eight-probe_Neuropixels_recordings_
during_spontaneous_behaviors/7739750

Two-photon imaging in mice (23) https://janelia.figshare.com/articles/
dataset/Recordings_of_ten_thousand_neurons_
in_visual_cortex_during_spontaneous_
behaviors/6163622

Table S2. Resources for additional experimental datasets

To validate our findings across different recording methods and animal models, we also analyzed three additional408

datasets. We include a brief description below for completeness. Further details can be found in the respective409

reference. The first dataset includes whole-brain light-sheet Ca2+ imaging of immobilized larval zebrafish in the410

presence of visual stimuli as well as in a spontaneous state (33). Each volume of the brain was scanned through411

2.11±0.21 planes per sec, providing a near-simultaneous readout of neuronal Ca2+ signals. We analyzed fish412

8 (69,207 neurons × 7,890 frames), 9 (79,704 neurons × 7,720 frames) and 11 (101,729 neurons × 8,528413

frames), which are the first three fish data with more than 7,200 frames. For simplicity, we labeled them l2, l3,414

and l1(fl). The second dataset consists of Neuropixels recordings from approximately ten different brain areas415

in mice during spontaneous behavior (23). Data from the three mice, Kerbs, Robbins, and Waksman, include416

the firing rate matrices of 1,462 neurons × 39,053 frames, 2,296 neurons × 66,409 frames, and 2,688 neurons417

× 74,368 frames, respectively. The last dataset comprises two-photon Ca2+ imaging data (2-3 Hz) obtained418

from the visual cortex of mice during spontaneous behavior. While this dataset includes numerous animals,419

we focused on the first three animals that exhibited spontaneous behavior:spont_M150824_MP019_2016-04-05420

(11,983 neurons × 21,055 frames), spont_M160825_MP027_2016-12-12 (11,624 neurons × 23,259 frames), and421

spont_M160907_MP028_2016-09-26 (9,392 neurons × 10,301 frames) (23).422

4.3 Covariance matrix, eigenspectrum and sampling procedures423

To begin, we multiplied the inferred firing rate of each neuron (see section 4.1.2) by a constant such that in the424

resulting activity trace ai, the mean of ai(t) over the nonzero time frames equaled one (20). Consistent with the425

literature (20), this step aimed to eliminate possible confounding factors in the raw activity traces, such as the426

heterogeneous expression level of the fluorescence protein within neurons and the non-linear conversion of the427

electrical signal to Ca2+ concentration. Note that after this scaling, neurons could still have different activity levels428

characterized by the variance of ai(t) over time, due to differences in the sparsity of activity (proportion of nonzero429

frames) and the distribution of nonzero ai(t) values. Without normalization, the covariance matrix becomes nearly430

diagonal, causing significant underestimation of the covariance structures.431

432

The three models of covariance in Fig. 2G-I were constructed as follows. For model in Fig. 2G, the entries433

of matrix G (with dimensions N × T ) were sampled from an i.i.d. Gaussian distribution with zero mean and434
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4.3 Covariance matrix, eigenspectrum and sampling procedures

standard deviation σ = 1. In Fig. 2H, we constructed the composite covariance matrix for fish 1 achieved by435

maintaining the eigenvalues from the fish 1 data covariance matrix and replacing the eigenvectors U with a set436

of random orthonormal basis. Lastly, the covariance matrix in Fig. 2I was generated from a randomly connected437

recurrent network of linear rate neurons. The entries in the synaptic weight matrix are normally distributed with438

Jij ∼ N (0,g2/N), with a coupling strength g = 0.95 (31, 32). For consistency, we used the same number of time439

frames T = 7,200 when comparing CI across all the datasets (Fig. 4BC, Fig. 5DE, Fig. S6C). For other cases, we440

analyzed the full length of the data (number of time frames: fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish 4 - 7318,441

fish 5 - 7200, fish 6 - 9388). Next, the covariance matrix was calculated as Cij = 1
T−1

∑T
t=1 (ai(t)− āi)(aj(t)− āj),442

where āi is the mean of ai(t) over time. Finally, to visualize covariance matrices on a common scale, we multiplied443

matrix C by a constant such that the average of its diagonal entries equaled one, that is, Tr(C)/N = 1. This scaling444

did not alter the shape of covariance eigenvalue distribution, but set the mean at 1 (see also Eq. (8)).445

446

To maintain consistency across data sets, we fixed the same initial number of neurons at N0 = 1,024. These447

N0 neurons were randomly chosen once for each zebrafish dataset and then used throughout the subsequent448

analyses. We adopted this setting for all analyses except in two particular instances: (1) for comparisons among449

the three sampling methods (RSap, ASap, and FSap), we specifically chose 1,024 neurons centered along the450

anterior-posterior axis, mainly from the midbrain to the anterior hindbrain regions (Fig. 5DE, Fig. S20). (2) When451

investigating the impact of hunting behavior on scale invariance, we included the entire neuronal population452

(section 4.11).453

454

We used an iterative procedure to sample the covariance matrix C (calculated from data or as simulated455

ERMs). For RSap, in the first iteration, we randomly selected half of the neurons. The covariance matrix for these456

selected neurons was a N/2 ×N/2 diagonal block of C. Similarly, the covariance matrix of the unselected neurons457

was another diagonal block of the same size. In the next iteration, we similarly created two new sampled blocks458

with half the number of neurons for each of the blocks we had. Repeating this process for n iterations resulted in 2n459

blocks, each containing N :=N0/2n neurons. At each iteration, the eigenvalues of each block were calculated and460

averaged across the blocks after being sorted in descending order. Finally, the averaged eigenvalues were plotted461

against rank/N on a log-log scale.462

463

In the case of ASap and FSap, the process of selecting neurons was different, although the remaining procedures464

followed the RSap protocol. In ASap, the selection of neurons was based on a spatial criterion: neurons close to465

the anterior end on the anterior-posterior axis were grouped to create a diagonal block of size N
2 × N

2 , with the466

remaining neurons forming a separate block. FSap, on the other hand, used the Renormalization Group (RG)467

framework (20) to define the blocks (details in section 4.12). In each iteration, the cluster of neurons within a block468

that showed the highest average correlation (Ei ̸=j(C2
ij)) was identified and labeled as the most correlated cluster469

(refer to Fig. 5D, Figures S20 and S21).470

471

In the ERM model, as part of implementing ASap, we generated anatomical and functional coordinates for472

neurons with a specified CCA properties as described in section 4.9. Mirroring the approach taken with our data,473

ASap segmented neurons into groups based on the first dimension of their anatomical coordinates, akin to the474

anterier-posterior axis. FSap employed the same RG procedures outlined earlier (section 4.12).475

476

To determine the overall power-law coefficient of the eigenspectra, α, throughout sampling, we fitted a straight line in477

the log-log rank plot to the large eigenvalues that combined the original and three iterations of sampled covariance478

matrices (selecting the top 10% eigenvalues for each matrix and excluding the first four largest ones for each479

matrix). We averaged the estimated α over 10 repetitions of the entire sampling procedure. R2 of the power-law480

fit was computed in a similar way. To visualize the statistical structures of the original and sampled covariance481

matrices, the orders of the neurons (i.e. columns and rows) are determined by the following algorithm. We first482

construct a symmetric Toeplitz matrix T , with entries Ti,j = ti−j and ti−j ≡ tj−i. The vector t⃗= [t0, t1, . . . , tN−1] is483

equal to the mean covariance vector of each neuron calculated below. Let c⃗i be a row vector of the data covariance484

matrix; we identify t⃗ = 1
N

∑N
i=1D(c⃗i), where D(·) denotes a numerical ordering operator, namely rearranging the485

elements in a vector c⃗ such that c0 ≥ c1 ≥ . . . ≥ cN−1. The second step is to find a permutation matrix P such486

that ∥T −PCPT ∥F is minimized, where ∥ ∥F denotes the Frobenius norm. This quadratic assignment problem487

is solved by simulated annealing. Note that after sampling, the smaller matrix will appear different from the larger488

one. We need to perform the above reordering algorithm for every sampled matrix so that matrices of different sizes489

become similar in Fig. 2E.490

491

The composite covariance matrix with substituted eigenvectors in (Fig. 2H) was created as described in the492
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4.4 Dimensionality

following steps. First, we generated a random orthogonal matrix Ur (based on the Haar measure) for the493

new eigenvectors. This was achieved by QR decomposition A = UrR of a random matrix A with i.i.d. entries494

Aij ∼ N (0,1/N). The composite covariance matrix Cr was then defined as Cr := UrΛUTr , where Λ is a diagonal495

matrix that contains the eigenvalues of C. Note that since all the eigenvalues are real and Ur is orthogonal, the496

resulting Cr is a real and symmetric matrix. By construction, Cr and C have the same eigenvalues, but their497

sampled eigenspectra can differ.498

4.4 Dimensionality499

In this section, we introduce the Participation Ratio (DPR) as a metric for effective dimensionality of a system, based500

on (25–29, 62). DPR is defined as:501

DPR(C) =
(
∑
iλi)

2∑
iλ

2
i

= (Tr(C))2

Tr(C2) = N2E(σ2)2

NE(σ4)+N(N −1)Ei ̸=j(C2
ij)

(5)

Here, λi are the eigenvalues of the covariance matrix C, representing variances of neural activities. Tr(·) denotes502

the trace of the matrix. The term Ei ̸=j(C2
ij) denotes the expected value of the squared elements that lie off the main503

diagonal of C. This represents the average squared covariance between the activities of distinct pairs of neurons.504

505

With these definitions, we explore the asymptotic behavior of DPR as the number of neurons N approaches506

infinity:507

lim
N→∞

DPR(C) = E(σ2)2

Ei ̸=j(C2
ij)

This limit highlights the relationship between the PR dimension and the average squared covariance among different508

pairs of neurons. To predict how DPR scales with the number of neurons (Fig. 2D), we first estimated these statistical509

quantities (Ei ̸=j(C2
ij), E(σ2), and E(σ4)) using all available neurons, then applied Eq. (5) for different values of N .510

It is worth mentioning that a similar theoretical finding is established by Dahmen et. al. (29). The transition from511

increasing DPR with N to approaching the saturation point occurs when N is significantly larger than DPR.512

4.5 ERM model513

We consider the eigenvalue distribution or spectrum of the matrix C at the limit of N ≫ 1 and L≫ 1. This spectrum514

can be analytically calculated in both high-density and intermediate-density scenarios using the replica method (34).515

The following sketch shows our approach, and detailed derivations can be found in Supp. Note. To calculate the516

probability density function of the eigenvalues (or eigendensity), we first compute the resolvent or Stieltjes transform517

g(z) = − 2
N ∂z

〈
ln det(zI−C)−1/2

〉
, z ∈C. Here ⟨...⟩ is the average across the realizations of C (that is, random x⃗i’518

s and σ2
i ’ s). The relationship between the resolvent and the eigendensity is given by the Sokhotski-Plemelj formula:519

p(λ) = − 1
π

lim
η→0+

Im g(λ+ iη), (6)

where Im means imaginary part.520

521

Here we follow the field-theoretic approach (34), which turns the problem of calculating the resolvent to a522

calculation of the partition function in statistical physics by using the replica method. In the limit N → ∞, Ld → ∞, ρ523

being finite, by performing a leading order expansion of the canonical partition function at large z (Supp. Note), we524

find the resolvent is given by525

g(z) = 1
ρ

∫ ddk⃗
(2π)d

1
z−ρE(σ2)f̃(k⃗)

(7)

526

527

In the high-density regime, the probability density function (pdf) of the covariance eigenvalues can be approximated528

and expressed from Equations (6) and (7) using the Fourier transform of the kernel function f̃(k⃗):529

p(λ) = 1
ρE(σ2)

∫
Rd

ddk⃗
(2π)d

δ

(
λ

E(σ2) −ρf̃(k⃗)
)
, (8)
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4.5 ERM model

where δ(x) is the Dirac delta function and E(σ2) is the expected value of the variances of neural activity. Intuitively,530

Eq. (8) means that λ/ρ are distributed with a density proportional to the area of f̃(k⃗)’ level sets (i.e., isosurfaces).531

532

In section 2.3, we found that the covariance matrix consistently shows greater scale invariance compared to533

the correlation matrix across all datasets. This suggests that the variability in neuronal activity significantly534

influences the eigenspectrum. This finding, however, cannot be explained by the high-density theory, which predicts535

that the eigenspectrum of the covariance matrix is simply a rescaling of the correlation eigenspectrum by E(σ2
i ),536

the expected value of the variances of neural activity. Without loss of generality, we can always standardize the537

fluctuation level of neural activity by setting E(σ2) = 1. This is equivalent to multiplying the covariance matrix C by538

a constant such that Tr(C)/N = 1, which in turn scales all the eigenvalues of C by the same factor. Consequently,539

the heterogeneity of σ2
i has no effect on the scale invariance of the eigenspectrum (see Eq. (8)). This theoretical540

prediction is indeed correct and is confirmed by direct numerical simulations and quantifying the scale invariance541

using the CI (Fig. S6A).542

543

Fortunately, the inconsistency between theory and experimental results can be resolved by focusing the ERM within544

the intermediate density regime ρϵd ≪ 1, where neurons are positioned at a moderate distance from each other.545

As mentioned above, we set E(σ2) = 1 in our model and vary the diversity of activity fluctuations among neurons546

represented by E(σ4). Consistent with the experimental observations, we find that the CI decreases with E(σ4)547

(see Fig. S6B). This agreement indicates that the neural data are better explained by the ERM in the intermediate548

density regime.549

550

To gain a deeper understanding of this behavior, we use the Gaussian variational method (34) to calculate551

the eigenspectrum. Unlike the high-density theory where the eigendensity has an explicit expression, in the552

intermediate density the resolvent g(z) no longer has an explicit expression and is given by the following equation553

g(z) =
〈

1
z−σ2

∫
Dk⃗ G̃(k⃗, z)

〉
σ

, (9)

where ⟨...⟩σ computes the expectation value of the term within the bracket with respect to σ, namely ⟨...⟩σ ≡554 ∫
...p(σ)dσ. Here and in the following, we denote

∫
Dk⃗ ≡

∫ ddk⃗
(2π)d . The function G(k⃗, z) is determined by a555

self-consistent equation,556

1
f̃(k⃗)

= 1
G̃(k⃗, z)

+
〈

ρσ2

z−σ2
∫

Dk⃗ G̃(k⃗, z)

〉
σ

(10)

We can solve
∫

Dk⃗ G(k⃗, z) from Eq. (10) numerically and below is an outline, and the details are explained in557

Supp. Note. Let us define the integral G ≡
∫

Dk⃗ G̃(k⃗, z). First, we substitute z ≡ λ+ iη into Eq. (10) and write558

G = ReG + iImG. Eq. (10) can thus be decomposed into its real part and imaginary part, and a set of nonlinear and559

integral equations, each of which involves both ReG and ImG. We solve these equations at the limit η → 0 using a560

fixed-point iteration that alternates between updating ReG and ImG until convergence.561

562

We find that the variational approximations exhibit excellent agreement with the numerical simulation for both563

large and intermediate ρ where the high-density theory starts to deviate significantly (for ρ = 256 and ρ = 10.24,564

ϵ = 0.03125, Fig. S3). Note that the departure of the leading eigenvalues in these plots is expected, since the565

power-law kernel function we use is not integrable (see section 4.6).566

567

To elucidate the connection between the two different methods, we estimate the condition when the result of568

the high-density theory (Eq. (8)) matches that of the variational method (Equations (9) and (10)) (Supp. Note). The569

transition between these two density regimes can also be understood (see section 4.8.1 and Supp. Note).570

571

Importantly, the scale invariance of the spectrum at µ/d → 0 previously derived using the high-density result572

(Eq. (3)) can be extended to the intermediate-density regime by proving the ρ-independence using the variational573

method (Supp. Note).574

575

Finally, using the variational method and the integration limit estimated by simulation (see section 4.7.2), we576

show that the heterogeneity of the variance of neural activity, quantified by E(σ4), indeed improves the collapse of577

the eigenspectra for intermediate ρ (Supp. Note). Our theoretical results agree excellently with the ERM simulation578

(Fig. S6A, B).579
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4.6 Kernel function

4.6 Kernel function580

Throughout the paper, we have mainly considered a particular approximate power-law kernel function inspired by581

the Student’s t distribution (section 2.2)582

f(x⃗) = ϵµ(ϵ2 +∥x⃗∥2)−µ/2. (11)

To understand how to choose ϵ and µ, see section 4.8.1. Variations of Eq. (11) near x= 0 have also been explored;583

see a summary in table S3.584

585

586

f(x⃗) Definition

Flat f(x⃗) =

{
1, ∥x⃗∥ < ϵ
ϵµ

∥x⃗∥µ , ∥x⃗∥ ≥ ϵ

Tangent f(x⃗) =

{
b∥x⃗∥ + 1, ∥x⃗∥ < cϵ,f ′(cϵ) = b
ϵµ

∥x⃗∥µ , ∥x⃗∥ ≥ cϵ

Tent f(x⃗) =

{
b∥x⃗∥ + 1, ∥x⃗∥ < cϵ,f ′(cϵ) ̸= b
ϵµ

∥x⃗∥µ , ∥x⃗∥ ≥ cϵ

Parabola f(x⃗) =

{
b∥x⃗∥2 + 1, ∥x⃗∥ < cϵ,f ′(cϵ) = 2bcϵ
ϵµ

∥x⃗∥µ , ∥x⃗∥ ≥ cϵ

t pdf f(x⃗) = ϵµ(ϵ2 + ∥x⃗∥2)−µ/2

Table S3. Modifications of the shape of f(x⃗) near ∥x⃗∥ = 0 used in Fig. S7, Fig. S8 and Fig. S9. Flat: when ∥x⃗∥ < ϵ, f(x⃗) = 1.
Tangent: when ∥x⃗∥ < cϵ, f(x⃗) follows a tangent line of the exact power law (b∥x⃗∥+1 and ϵµ

∥x⃗∥µ have a same first-order derivative
when ∥x⃗∥ = cϵ). b and c are constants. Tent: when ∥x⃗∥ < cϵ, f(x⃗) follows a straight line while the slope is not the same as the
tangent case. Parabola: when ∥x⃗∥ < cϵ, f(x⃗) follows a quadratic function (ax2 + 1 and ϵµ

∥x⃗∥µ have same first-order derivative). t
pdf: mimic the smoothing treatment like the t distribution. All the constant parameters are set such that f(0) = 1.

It is worth mentioning that a power law is not the only slow decaying function that can produce a scale-invariant587

covariance spectrum (Fig. S5). We choose it for its analytical tractability in calculating the eigenspectrum.588

Importantly, we find numerically that the two contributing factors to scale invariance – namely, slow spatial decay589

and higher functional space – can be generalized to other nonpower-law functions. An example is the stretched590

exponential function f(x⃗) = e−∥x⃗∥η
with 0< η < 1. When η is small and d is large, the covariance eigenspectra also591

display a similar collapse upon random sampling (Fig. S5).592

593

This approximate power-law f(x⃗) has the advantage of having an analytical expression for its Fourier transform,594

which is crucial for the high-density theory (Eq. (8)),595

f̃(k⃗) =
2

d−µ+2
2 π

d
2 k

µ−d
2 ϵ

µ+d
2 K(d−µ)/2(kϵ)

Γ(µ/2) , k = ∥k⃗∥ (12)

Here Kα(x) is the modified Bessel function of the second kind, and Γ(x) is the Gamma function. We calculated the596

above formulas analytically for d = 1,2,3 with the assistance of Mathematica and conjectured the case for general597

dimension d, which we confirmed numerically for d≤ 10.598

599

We want to explain two technical points relevant to the interpretation of our numerical results and the choice600

of f(x⃗). Unlike the case in the usual ERM, here we allow f(x⃗) to be non-integrable (over Rd), which is crucial601

to allow power law f(x⃗). The nonintegrability violates a condition in the classical convergence results of the602

ERM spectrum (63) as N → ∞. We believe that this is exactly the reason for the departure of the first few603

eigenvalues from our theoretical spectrum (e.g., in Fig. 3). Our hypothesis is also supported by ERM simulations604

with integrable f(x⃗) (Fig. S4), where the numerical eigenspectrum matches closely with our theoretical one,605

including the leading eigenvalues. For ERM to be a legitimate model for covariance matrices, we need to ensure606

that the resulting matrix C is positive semidefinite. According to the Bochner theorem (64), this is equivalent to607
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4.7 Collapse index (CI)

the Fourier transform (FT) of the kernel function f̃(k⃗) being nonnegative for all frequencies. For example, in 1D,608

a rectangle function rect(x) =
{

1, if |x| ≤ 1
2

0, otherwise
does not meet the condition (its FT is sinc(x) = sin(x)

x ), but a609

tent function tent(x) =
{

1−|x|, if |x| ≤ 1
0, otherwise

does (its FT is sinc2(x)). For the particular kernel function f(x⃗) in610

Eq. (11), this condition can be easily verified using the analytical expressions of its Fourier transform (Eq. (12)). The611

integral expression for Kα(x), given as Kα(x) =
∫∞

0 e−xcosh t cosh(αt)dt, shows that Kα(x) is positive for all x > 0.612

Likewise, the Gamma function Γ(x) > 0. Therefore, the Fourier transform of Eq. (11) is positive and the resulting613

matrix C (of any size and values of x⃗i) is guaranteed to be positive definite.614

615

Building upon the theory outlined above, numerical simulations further validated the empirical robustness of616

our ERM model, as showcased in Fig. 3B-D and Fig. 4A. In Fig. 3B-D, the ERM was characterized by the617

parameters N = 1024, d = 2, L = 10, ρ = 10.24 and µ = 0.5 and ϵ = 0.03125 for f(x⃗). To numerically compute618

the eigenvalue probability density function, we generated the ERM 100 times, each sampled using the method619

described in section 4.3. The probability density function (pdf) was computed by calculating the pdf of each ERM620

realization and averaging these across the instances. The curves in Fig. 3D showed the average of over 100621

ERM simulations. The shaded area (most of which is smaller than the marker size) represented the SEM. For622

Fig. 4A, the columns from left to right were corresponded to µ= 0.5, 0.9, 1.3, and the rows from top to bottom were623

corresponded to d= 1, 2, 3. Other ERM simulation parameters: N = 4096, ρ= 256, L= (N/ρ)1/d, ϵ= 0.03125 and624

σ2
i = 1. It should be noted that for Fig. 4A, the presented data pertain to a single ERM realization.625

4.7 Collapse index (CI)626

We quantify the extent of scale invariance using CI defined as the area between two spectrum curves (Fig. 4A627

upper right), providing an intuitive measure of the shift of the eigenspectrum when varying the number of sampled628

neurons. We chose the CI over other measures of distance between distributions for several reasons. First, it directly629

quantifies the shift of the eigenspectrum, providing a clear and interpretable measure of scale invariance. Second,630

unlike methods that rely on estimating the full distribution, the CI avoids potential inaccuracies in estimating the631

probability of the top leading eigenvalues. Finally, the use of CI is motivated by theoretical considerations, namely632

the ERM in the high-density regime, which provides an analytical expression for the covariance spectrum (Eq. (3))633

valid for large eigenvalues.634

CI := 1
log(q0/q1)

∫ logq0

logq1

∣∣∣∣∂ logλ(q)
∂ logρ

∣∣∣∣dlogq, (13)

we set q1 such that λ(q1) = 1, which is the mean of the eigenvalues of a normalized covariance matrix. The other635

integration limit q0 is set to 0.01 such that λ(q0) is the 1% largest eigenvalue.636

Here we provide numerical details on calculating CI for the ERM simulations and experimental data.637

4.7.1 A calculation of collapse index for experimental datasets/ERM model. To calculate CI for a covariance matrix C638

of size N0, we first computed its eigenvalues λ0
i and those of the sampled block Cs of size Ns = N0/2, denoted639

as λsi (averaged over 20 times for the ERM simulation and 2000 times in experimental data). Next, we estimated640

logλ(q) using the eigenvalues of C0 and Cs at q = i/Ns, i = 1,2, . . . ,Ns. For the sampled Cs, we simply had641

logλ(q = i/Ns) = logλsi , its i-th largest eigenvalue. For the original C0, logλ(q = i/Ns) was estimated by a linear642

interpolation, on the logλ-logq scale, using the value of logλ(q) in the nearest neighboring q = i/N0’s (which again643

are simply logλ0
i ). Finally, the integral (Eq. (13)) was computed using the trapezoidal rule, discretized at q = i/Ns’644

s, using the finite difference ∂ logλ(q)
∂ logρ ≈ 1

log(N0/Ns) |∆logλ(q)|, where ∆ denotes the difference between the original645

eigenvalues of C0 and those of sampled Cs.646

4.7.2 Estimating CI using the variational method. In the definition of CI (Eq. (13) , calculating λ(q) and ∂ logλ(q)
∂ logρ directly647

using the variational method is difficult, but we can make use of an implicit differentiation648

∂ logλ(q,ρ)
∂ logρ = ρ

λ

∂λ(q,ρ)
∂ρ

= −ρ

λ

∂q(ρ,λ)
∂ρ

∂q(ρ,λ)
∂λ

, (14)
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4.8 Fitting ERM to data

where q(λ) :=
∫∞
λ p(λ)dλ is the complementary cdf (the inverse function of λ(q) in section 4.7.1). Using this, the649

integral in CI (Eq. (13)) can be rewritten as650 ∫ logq0

logq1

∣∣∣∣∂ logλ(q,ρ)
∂ logρ

∣∣∣∣dlogq =
∫ q0

q1

∣∣∣∣∣− ρ

qλ

∂q
∂ρ

∂q
∂λ

∣∣∣∣∣dq
=
∫ λ(q0)

λ(q1)

∣∣∣∣∣− ρ

qλ

∂q
∂ρ

∂q
∂λ

∣∣∣∣∣ ∂q∂λdλ=
∫ λ(q1)

λ(q0)

∣∣∣∣ 1λ ∂ logq
∂ logρ

∣∣∣∣dλ.
(15)

Since ∂q
∂λ = −p(λ)< 0, we switch the order of the integration interval in the final expression of Eq. (15).651

652

First, we explain how to compute the complementary cdf q(λ) numerically using the variational method. The653

key is to integrate the probability density function p(λ) from λ to a finite λ(qs) rather than to infinity,654

q(λ) =
∫ ∞

λ
p(λ)dλ=

∫ ∞

λ(qs)
p(λ)dλ+

∫ λ(qs)

λ
p(λ)dλ= qs+

∫ λ(qs)

λ
p(λ)dλ. (16)

The integration limit λ(qs) cannot be calculated directly using the variational method. We thus used the value of655

λs(qs ≈ q0) (section 4.7) from simulations of the ERM with a large N = 1024 as an approximation. Furthermore, we656

employed a smoothing technique to reduce bias in the estimation of λs(qs) due to the leading zigzag eigenvalues657

(i.e., the largest eigenvalues) of the eigenspectrum. Specifically, we determined the nearest rank j < Nq0 and658

then smoothed the eigenvalue logλs(qs) on the log-log scale using the formula logλs(qs) = 1
3

2∑
i=0

logλs( j+iN ) and659

logqs = 1
3

2∑
i=0

log j+iN , averaging over 100 ERM simulations.660

661

Note that we can alternatively use the high-density theory (Supp. Note) to compute the integration limit662

λ(qs = 1/N) instead of resorting to simulations. However, since the true value deviates from the λh(qs = 1/N)663

derived from high-density theory, this approach introduces a constant bias (Fig. S6) when computing the integral in664

Eq. (16). Therefore we used the simulation value λs(qs ≈ q0) when producing Fig. S6AB.665

666

Next, we describe how each term within the integral of Eq. (15) was numerically estimated. First, we calculated667

∂ logq
∂ logρ with a similar method described in section 4.7.1. Briefly, we calculated q0(λ) for density ρ0 = N0

Ld and qs(λ)668

for density ρs = Ns
Ld , and then used the finite difference 1

log(ρ0/ρs) |∆logq(λ)|. Second, ∂ logq(λ)
∂ logρ was evaluated at669

λ = λ(q1) + iλ(q0)−λ(q1)
k−1 , where i = 0,1,2, . . . ,k− 1, and we used k = 20. Finally, we performed a cubic spline670

interpolation of the term ∂ logq
∂ logρ , and obtained the theoretical CI by an integration of Eq. (15). Fig. S6A,B shows a671

comparison between theoretical CI and that obtained by numerical simulations of ERM (section 4.7.1).672

4.8 Fitting ERM to data673

4.8.1 Estimating the ERM parameters. Our ERM model has 4 parameters: µ and ϵ dictate the kernel function f(x⃗),674

whereas the box size L and the embedding dimension d determine the neuronal density ρ. In the following, we675

describe an approximate method to estimate these parameters from pairwise correlations measured experimentally676

Rij = Cij

σiσj
. We proceed by deriving a relationship between the correlation probability density distribution h(R) and677

the pairwise distance probability density distribution g(u) := g(∥x⃗1 − x⃗2∥) in the functional space, from which the678

parameters of the ERM can be estimated.679

680

Consider a distribution of neurons in the functional space with a coordinate distribution p(x⃗). The pairwise681

distance density function g(u) is related to the spatial point density by the following formula:682

g(u) =
∫

[0,L]d
p(x⃗1)p(x⃗2)δ(∥x⃗1 − x⃗2∥−u)dx⃗1dx⃗2 (17)

For ease of notation, we subsequently omit the region of integration, which is the same as here. In the case of683

a uniform distribution, p(x⃗1) = p(x⃗2) = 1/V = 1/Ld. For other spatial distributions, Eq. (17) cannot be explicitly684

evaluated. We therefore make a similar approximation by focusing on a small pairwise distance (i.e., large685
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4.8 Fitting ERM to data

correlation):686

p(x⃗1) ≈ p(x⃗2) ≈ p( x⃗1 + x⃗2
2 ) (18)

By a change of variables:687

X⃗ = x⃗1 + x⃗2
2 , u⃗= x⃗1 − x⃗2,

Eq. (17) can be rewritten as688

g(u) ≈
∫
p2(X⃗)δ(∥u⃗∥−u)dX⃗du⃗= Sd−1(u)

∫
p2(X⃗)dX⃗

(19)

where Sd−1(u) is the surface area of d− 1 sphere with radius u. Note that the approximation of g(u) is not689

normalized to 1, as Eq. (19) provides an approximation valid only for small pairwise distances (i.e., large correlation).690

Therefore, we believe this does not pose an issue.691

692

With the approximate power-law kernel function R = f(u) ≈ ( ϵu )µ, the probability density function of pairwise693

correlation h(R) is given by:694

h(R) = g(u)
∣∣∣∣ du
dR

∣∣∣∣= 2π d
2 ϵd

Γ(d2 )µR(µ+d)/µ

∫
p2(X⃗)dX⃗ (20)

Taking the logarithm on both sides695

logh(R) = log
(
ϵd
∫
p2(X⃗)dX⃗

)
+log 2π d

2

Γ(d2 )µ
− µ+d

µ
logR (21)

Eq. (21) is the key formula for ERM parameters estimation. In the case of a uniform spatial distribution,696

ϵd
∫
p2(X⃗)dX⃗ = ϵd/V = (ϵ/L)d. For a given dimension d, we can therefore estimate µ and (ϵ/L)d separately by697

fitting h(R) on the log-log scale using the linear least squares. Lastly, we fit the distribution of σ2 (the diagonal698

entries of the covariance matrix C) to a log-normal distribution by estimating the maximum likelihood.699

700

There is a redundancy between the unit of the functional space (using a rescaled ϵδ ≡ ϵ/δ) and the unit of701

f(x⃗) (using a rescaled fδ(x⃗) ≡ f(x⃗/δ)), thus ϵ and L are a pair of redundant parameters: once ϵ is given, L is702

also determined. We set ϵ = 0.03125 throughout the article. In summary, for a given dimension d and ϵ, µ of f(x⃗)703

(Eq. (11)), the distribution of σ2 (section 2.2) and ρ (or equivalently L) (section 2.2) can be fitted by comparing the704

distribution of pairwise correlations in experimental data and ERM. Furthermore, knowing (ϵ/L)d enables us to705

determine a fundamental dimensionless parameter706

ρϵd :=N(ϵ/L)d,

which tells us whether the experimental data are better described by the high-density theory or the Gaussian707

variational method (Supp. Note). Indeed, the fitted ρϵd ∼ 10−3 − 100 is much smaller than 1, consistent with our708

earlier conclusion that neural data are better described by an ERM model in the intermediate-density regime.709

710

Notably, we found that a smaller embedding dimension d ≤ 5 gave a better fit to the overall pairwise correlation711

distribution. The following is an empirical explanation. As d grows, to best fit the slope of logh(R)− logR, µ will also712

grow. However, for very high dimensions d, the y-intercept would become very negative, or equivalently, the fitted713

correlation would become extremely small. This can be verified by examining the leading order logR independent714

term in Eq. (21), which can be approximated as d log ϵ
L + d

2
(
logπ+1− log d2

)
. It becomes very negative for large d715

since ϵ≪ L by construction. Throughout this article, we use d= 2 when fitting the experimental data with our ERM716

model.717

718

The above calculation can be extended to the cases where the coordinate distribution p(x⃗) becomes dependent719

on other parameters. To estimate the parameters in coordinate distributions that can generate ERMs with720

a similar pairwise correlation distribution (Fig. S9), we fixed the integral value
∫
p2(x⃗)dx⃗. Consider, for721

example, a transformation of the uniform coordinate distribution to the normal distribution N (µp = 0,σ2
pI) in722

R2. We imposed
∫
p2(x⃗)dx⃗ = 1/(4πσ2

p) = 1/L2. For the log-normal distribution, a similar calculation led to723
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4.9 Canonical-Correlation Analysis (CCA)

Lexp(σ2
p/4 −µp) = 2

√
πσp. The numerical values for these parameters are shown in section 4.10. However, note724

that due to the approximation we used (Eq. (18)), our estimate of the ERM parameters becomes less accurate if the725

density function p(x⃗) changes rapidly over a short distance in the functional space. More sophisticated methods,726

such as grid search, may be needed to tackle such a scenario.727

728

After determining the parameters of the ERM, we first examine the spectrum of the ERM with uniformly729

distributed random functional coordinates x⃗i ∈ [0,L]d (Fig. S10M-R). Second, we use f(x⃗) to translate experimental730

pairwise correlations into pairwise distances for all neurons in the functional space (Fig. S11, Fig. S10G-L). The731

embedding coordinates x⃗i in the functional space can then be solved through Multidimensional Scaling (MDS)732

by minimizing the Sammon error (section 4.8.3). The similarity between the spectra of the uniformly distributed733

coordinates (Fig. S10M-R) and those of the embedding coordinates (Fig. S10G-L) is also consistent with the notion734

that specific coordinate distributions in the functional space have little impact on the shape of the eigenspectrum735

(Fig. S9).736

4.8.2 Nonnegativity of data covariance. To use ERM to model the covariance matrix, the pairwise correlation is given737

by a non-negative kernel function f(x⃗) that monotonically decreases with the distance between neurons in the738

functional space. This nonnegativeness brings about a potential issue when applied to experimental data, where,739

in fact, a small fraction of pairwise correlations/covariances are negative. We have verified that the spectrum of740

the data covariance matrix (Fig. S18) remains virtually unchanged when replacing these negative covariances with741

zero (Fig. S18). This confirms that the ERM remains a good model when the neural dynamics is in a regime where742

pairwise covariances are mostly positive (51) (see also Fig. S2B, Fig. S2B-D).743

4.8.3 Multidimensional Scaling (MDS). With the estimated ERM parameters (µ in f(x⃗) and the box size L for given ϵ744

and d, see section 4.8.1), we performed MDS to infer neuronal coordinates x⃗i in functional space. First, we computed745

a pairwise correlation Rij = Cij

σiσj
from the data covariances. Next, we calculated the pairwise distance, denoted by746

u∗
ij , by computing the inverse function of f(x⃗) with respect to the absolute value of Rij , u∗

ij = f−1(|Rij |). We used747

the absolute value |Rij | instead of Rij as a small percentage of Rij are negative (Fig. S2A-D) where the distance748

is undefined. This substitution by the absolute value serves as a simple workaround for the issue and is only used749

here in the analysis to infer the neuronal coordinates by MDS. Finally, we estimated the embedding coordinates x⃗i750

for each neuron by the SMACOF algorithm (Scaling by MAjorizing a COmplicated Function ), which minimizes the751

Sammon error752

E = 1∑
i<j

u∗
ij

∑
i<j

(u∗
ij −uij)2

u∗
ij

(22)

where uij = ∥x⃗i− x⃗j∥ is the pairwise distance in the embedding space calculated above.753

754

To reduce errors at large distances (i.e., small correlations with Rij < f(L), where L is the estimated box755

size), we performed a soft cut-off at a large distance:756

u∗
ij = f−1(|Rij |), Rij ≥ f(L)
u∗
ij = L log(f−1(|Rij |)/L)+L, Rij < f(L)

(23)

During the optimization process, we started at the embedding coordinates estimated by the classical MDS (46),757

with an initial sum of squares distance error that can be calculated directly, and ended with an error or its gradient758

smaller than 10−4.759

760

The fitted ERM with the embedding coordinates x⃗i reproduced the experimental covariance matrix including761

the cluster structures (Fig. S11) and its sampling eigenspectra (Fig. S10).762

4.9 Canonical-Correlation Analysis (CCA)763

Here we briefly explain the CCA method (65) for completeness. The basis vectors v⃗func and v⃗anat, in functional764

and anatomical space, respectively, were found by maximizing the correlation RCCA = corr({v⃗func · x⃗i},{v⃗anat · y⃗i}).765

These basis vectors satisfy the condition that the projections of the neuron coordinates along them, {x⃗i · v⃗func} and766

{y⃗i · v⃗anat}, are maximally correlated among all possible choices of v⃗func and v⃗anat. Here {x⃗i}, {y⃗i} represent the767

coordinates in functional and anatomical spaces, respectively. The resulting maximum correlation is RCCA. To check768

the significance of the canonical correlation, we shuffled the functional space coordinates {x⃗i} across neurons’769

identity and re-calculated the canonical correlation with the anatomical coordinates, as shown in Fig. S13.770

771
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4.10 Extensions of ERM and factors not affecting the scale invariance

To study the effect of functional-anatomical relation described by RCCA in the ERM model, we generated772

three dimensional anatomical coordinates {y⃗i} and two dimensional functional coordinates {x⃗i} for each neuron773

which are jointly five-dimensional zero-mean multivariate Gaussian random variables. The coordinates are774

independent among each other, except for the first dimension {x⃗1
i } of the functional coordinates and the first775

dimension {y⃗1
i }, which are assigned to have a correlation coefficient equals to RCCA. The variances of the776

coordinates are σ2
y1 = 1,σ2

y2 = 1,σ2
y3 = 1 and σ2

x1 = 2,σ2
x2 = 1 for the numerics in Fig. S21. Under this construction,777

the first canonical correlation between the anatomical and functional coordinates equals RCCA, and the first778

canonical direction v⃗anat in the anatomical space is (1,0,0)T and the first canonical direction v⃗func in the functional779

space is (1,0)T .780

4.10 Extensions of ERM and factors not affecting the scale invariance781

In Fig. S9 we considered five additional types of spatial density distributions (coordinate distributions) in functional782

space and two additional functional space geometries. We examined the points distributed according to the uniform783

distribution (x⃗∼ 1/Ld), the normal distribution (x⃗∼ N (µp,σ2
pI)), and the log-normal distribution (log x⃗∼ N (µp,σ2

pI)).784

We used the method described in Methods section 4.8.1 to adjust the parameters of the coordinate distributions785

based on the uniform distribution case, so that they all generate similar pairwise correlation distributions. The786

relationships between these parameters are described in Methods section 4.8.1. In Fig. S9B, we used the following787

parameters: d = 2; L = 10 for the uniform distribution; µp = 0, σp = 2.82 for the normal distribution; and µp = 2,788

σp = 0.39 for the log-normal distribution.789

790

Second, we introduced multiple clusters of neurons in the functional space, with each cluster uniformly distributed791

in a box. We considered three arrangements: (1) two closely situated clusters (with a box size of L = 5
√

2, the792

distance between two cluster centers being Lc = L), (2) two distantly situated clusters (with a box size of L = 5
√

2793

and the distance between clusters Lc = 4L), and three clusters arranged symmetrically in an equilateral triangle794

(with a box size of L= 10/
√

3 and the distance between clusters Lc = L).795

796

Finally, we examined the scenario in which the points were uniformly distributed on the surface of a sphere797

(4πl2 = L2, l being the radius of the sphere) or a hemisphere (2πl2 = L2) embedded in R3 (the pairwise distance is798

that in R3). It should be noted that both cases have the same surface area as the 2D box.799

4.11 Analyzing the effects of removing neural activity data during hunting800

To identify and remove the time frames corresponding to putative hunting behaviors, the following procedure was801

used. The hunting interval was defined as 10 frames (1 sec) preceding the onset of an eye convergence (see802

Methods section 4.1.1) to 10 frames after the offset of this eye convergence. These frames were then excluded803

from the data before recalculating the covariance matrix (see Methods section 4.3) and subsequently the sampled804

eigenspectra (Fig. S15B, Fig. S16B,D,F,H). As a control to the removal of the hunting frame, an equal number of805

time frames that are not within those hunting intervals were randomly selected and then removed and analyzed806

(Fig. S15C, Fig. S16A,C,E,G). The number of hunting interval frames and total recording frames for five fish807

exhibiting hunting behaviors are as follows: fish 1 - 268/7495, fish 2 - 565/9774, fish 3 - 2734/13904, fish 4 -808

843/7318 and fish 5 - 1066/7200. Fish 6 (number of time frames: 9388) was not exposed to a prey stimulus and,809

therefore, was excluded from the analysis.810

811

To assess the impact of hunting removal on CI, we calculated the CI of the covariance matrix using all neurons812

recorded in each fish (without sampling to 1024 neurons). For the control case, we repeated the removal of the813

nonhunting frame 10 times to generate 10 covariance matrices and computed their CIs. We used a one-sample814

t-test to determine the level of statistical significance between the control CIs and the CI obtained after removal of815

the hunting frame.816

817

Using fitted ERM parameters by full data, we performed a MDS on the control data and hunting-removed818

data to infer the functional coordinates. Note that the functional coordinates inferred by MDS are not unique:819

rotations and translations give equivalent solutions. For visualization purposes (not needed for analysis), we first820

used the Umeyama algorithm to optimally align the functional coordinates of control and hunting-removed data.821

822

To identify distinct clusters within the functional coordinates, we fit Gaussian Mixture Models (GMMs) using823

the "GaussianMixtures" package in Julia. We chose the number of clusters K based on giving the smallest824

Bayesian Information Criterion (BIC) score. After fitting the GMMs, a list of probabilities pik, k = 1,2, . . . ,K was825

given for each neuron i specifying the probability of the neuron belonging to the cluster k. The mean and covariance826
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4.12 Renormalization-Group (RG) Approach

parameters were estimated for each Gaussian distributed cluster. For visualization (but not for analysis), a neuron827

was colored according to cluster k∗ where k∗ = argmax1≤k≤K pik.828

829

We used the following method to measure the size of the cluster and its fold change. For a 2D (recall d = 2830

in our ERM) Gaussian distributed cluster, let us consider an ellipse centered on its mean, and its axes are aligned831

with the eigenvectors of its covariance matrix C2×2. Let the eigenvalues of C be λ1,λ2. Then we set the length832

of the half-axis of the ellipse to be c
√
λi, respectively. Here c > 0 is a constant determined below. Note that the833

ellipse axes correspond to linear combinations of 2D Gaussian random variables that are independent and λi’s834

are the variance of these linear combinations. From this fact, it is straightforward to show that the probability that835

a sample from the Gaussian cluster lies in the above ellipse depends only on c, that is, 1 − e− c2
2 , and not on the836

shape of the cluster. So, the ellipse represents a region that covers a fixed proportion of neurons for any cluster,837

and its area can be used as a measure for the size of the Gaussian cluster. Note that the area of the ellipse is838

πc2√
λ1λ2 = πc2√det(C). In Fig. S17, we plot the ellipses to help visualize the clusters and their changes. We839

choose c such that the ellipse covers 95% of the probability (that is, the fraction of neurons belonging to the cluster).840

841

In the control functional map where we fit the GMMs, we directly calculated the size measure πc2√det(C)842

from the estimated covariance C for each Gaussian cluster. In the hunting-removed functional map, we needed to843

estimate the covariance C′ for neurons belonging to a cluster k under the new coordinates (we assume that the new844

distribution can still be approximated by a Gaussian distribution). We performed this estimation in a probabilistic845

manner to avoid issues of highly overlapping clusters where the cluster membership could be ambiguous for some846

neurons. First, we estimated the center/mean of the new Gaussian distribution by847

(x̄, ȳ) :=
(∑N

i=1 pikxi∑N
i=1 pik

,

∑N
i=1 pikyi∑N
i=1 pik

)
.

Here the summation goes over all the N neurons in the functional space and pik is the membership probability
defined above, and (xi,yi) is the coordinate of neuron i in the hunting-removed map. Similarly, we can use a

weighted average to estimate the entries in the covariance matrix C′ =
[
C′
xx C′

xy

C′
yx C′

yy

]
. For example,

Ĉ′
xy :=

∑N
i=1 pik (xi− x̄)(yi− ȳ)∑N

i=1 pik
.

Then we calculated the size of the cluster on the new map as πc2
√

det(Ĉ′). Finally, we computed the fold change848

in size as

√
det(Ĉ′)
det(C) .849

4.12 Renormalization-Group (RG) Approach850

Here we briefly summarize the RG approach used in (20) and elucidate the adjustments required when applying the851

RG approach to ERM. The method consists of two stages: (i) iterative agglomerate clustering of neurons, and (ii)852

computing the spectrum of a block of the original covariance matrix corresponding to a cluster of the desired size853

based on the previous clustering result.854

4.12.1 Stage (i): Iterative Clustering. We begin with N0 neurons, where N0 is assumed to be a power of 2. In the first855

iteration, we compute Pearson’s correlation coefficients for all neuron pairs. We then search greedily for the most856

correlated pairs and group the half pairs with the highest correlation into the first cluster; the remaining neurons form857

the second cluster. For each pair (a,b), we define a coarse-grained variable according to:858

xki = Zk−1
ab (xk−1

a +xk−1
b ), (24)

where Zk−1
ab normalizes the average to ensure unit nonzero activity. This process reduces the number of neurons859

to N1 = N0/2. In subsequent iterations, we continue grouping the most correlated pairs of the coarse-grained860

neurons, iteratively reducing the number of neurons by half at each step. This process continues until the desired861

level of coarse-graining is achieved.862

863

When applying the RG approach to ERM, instead of combining neural activity, we merge correlation matrices to864

traverse different scales. During the kth iteration, we compute the coarse-grained covariance as:865
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4.13 Spectrum of three types of sampling procedures in ERM model

ckij = ck−1
ab + ck−1

ac + ck−1
bc + ck−1

bd (25)

and the variance as:866

ckii = ck−1
aa + ck−1

bb +2ck−1
ab (26)

Following these calculations, we normalize the coarse-grained covariance matrix to ensure that all variances are867

equal to one. Note that these coarse-grained covariances are only used in stage (i) and not used to calculate the868

spectrum.869

870

4.12.2 Stage (ii): Eigenspectrum Calculation. The calculation of eigenspectra at different scales proceeds through871

three sequential steps. First, for each cluster identified in Stage (i), we compute the covariance matrix using the872

original firing rates of neurons within that cluster (not the coarse-grained activities). Second, we calculate the873

eigenspectrum for each cluster. Finally, we average these eigenspectra across all clusters at a given iteration level874

to obtain the representative eigenspectrum for that scale.875

876

In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster sizes as877

described in (20). Let N0 = 2n be the original number of neurons. To reduce it to size N = N0/2k = 2n−k, where878

k is the kth reduction step, consider the coarse-grained neurons in step n− k in stage (i). Each coarse-grained879

neuron is a cluster of 2n−k neurons. We then calculate spectrum of the block of the original covariance matrix880

corresponding to neurons of each cluster (there are 2k such blocks). Lastly, an average of these 2k spectra is881

computed.882

883

For example, when reducing from N0 = 23 = 8 to N = 23−1 = 4 neurons (k = 1), we would have two clusters of 4884

neurons each. We calculate the eigenspectrum for each 4x4 block of the original covariance matrix, then average885

these two spectra together. To better understand this process through a concrete example, consider a hypothetical886

scenario where a set of eight neurons, labeled 1,2,3, ...,7,8, are subjected to a two-step clustering procedure. In887

the first step, neurons are grouped based on their maximum correlation pairs, for example, resulting in the formation888

of four pairs: {1,2},{3,4},{5,6}, and {7,8} (see Fig. S22). Subsequently, the neurons are further grouped into889

two clusters based on the results of the RG step mentioned above. Specifically, if the correlation between the890

coarse-grained variables of the pair {1,2} and the pair {3,4} is found to be the largest among all other pairs of891

coarse-grained variables, the first group consists of neurons {1,2,3,4}, while the second group contains neurons892

{5,6,7,8}. Next, take the size of the cluster N = 4 for example. The eigenspectra of the covariance matrices of893

the four neurons within each cluster are computed. This results in two eigenspectra, one for each cluster. The894

correlation matrices used to compute the eigenspectra of different sizes do not involve coarse-grained neurons. It is895

the real neurons 1,2,3, ...,7,8, but with expanding cluster sizes. Finally, the average of the eigenspectra of the two896

clusters is calculated.897

4.13 Spectrum of three types of sampling procedures in ERM model898

In section 2.4 we have considered three types of sampling procedures: random sampling (RSap), spatial sampling in899

the anatomical space (ASap, e.g., recording neurons in a brain region), and spatial sampling in the functional space900

(FSap), namely spatial sampling in functional space by subdividing the space into smaller regions, is equivalent to901

the previously reported renormalization group (RG) inspired process (66, 67). Here we consider the relationship902

between the spectrum of three types of sampling procedures.903

904

We assume a uniform random distribution of neurons in a d-dimensional functional space, [0,L]d. For RSap905

procedures, the resulting neuronal density ρR is reduced to ρR = kρ0, with k representing the sampling ratio906

(k = N/N0) and ρ0 being the initial density. In contrast, FSap maintains the original density, ρF = ρ0. This907

constancy in neuronal density under FSap ensures that the covariance eigenspectrum remains invariant across908

scales for any spatial correlation functions f(x⃗), such as power law and exponential, as shown in Fig. S19A,B,D,E.909

In contrast, RSap reduces ρ, thus demanding more rigorous conditions to achieve a scale-invariant covariance910

spectrum (e.g., compare Fig. S19A and C).911

912

Under ASap, sampled neurons are not spread out evenly in functional space, whereas our theoretical framework913

assumes a uniform distribution. To reconcile this discrepancy, we employ a uniform approximation of the neural914

distribution. This approach involves introducing an effective density, ρ′, defined as the spatial average of the density915

function ρ(x⃗). This adjustment allows our theoretical model to accommodate non-uniform distributions encountered916
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4.14 Dimensions of three types of sampling procedures in ERM model

in anatomically spatial sampling.917

ρ′ ≡ ⟨ρ(x⃗)⟩ =
∫
p(x⃗)ρ(x⃗)dx⃗= kN0

∫
p2(x⃗)dx⃗, (27)

where p(x⃗) is the normalized density distribution (see Methods section 4.8.1).918

919

using the Cauchy-Schwarz inequality, we have920

∫
p2(x⃗)dx⃗

∫
dx⃗≥ (

∫
p(x⃗)dx⃗)2 (28)

thus ρ′ ≥ kρ0.921

922

According to the condition p(x⃗) < 1
kV , we have ρ′ ≤ ρ0, intuitively, sampling within a uniformly distributed923

neuron population does not increase the density.924

925

So we have ρ0 ≥ ρ′
A ≥ kρ0, i.e., ρF ≥ ρ′

A ≥ ρR. Thus the spectrum ASap should be between FSap and926

RSap.927

4.14 Dimensions of three types of sampling procedures in ERM model928

4.14.1 Scaling of Dimensions through Random Sampling. Let us revisit the definition of the Participation Ratio (PR)929

dimension as defined in Equation Eq. (5):930

DPR(C) =
(
∑
iλi)

2∑
iλ

2
i

= (Tr(C))2

Tr(C2) = N2E(σ2)2

NE(σ4)+N(N −1)Ei ̸=j(C2
ij)

(29)

931

932

During the random sampling process, the expected values E(σ2), E(σ4), and Ei ̸=j(C2
ij) remain constant.933

These constants allow for the estimation of the PR dimension across various scales using:934

DRSap
PR = kN0E(σ2)2

E(σ4)+(kN0 −1)Ei ̸=j(C2
ij)

(30)

Here, k = N/N0 represents a scaling factor (fraction) associated with sampling. The key question is to understand935

how the dimensionality changes with k. Under random sampling, as k increases, the dimensionality will quickly936

approaches a saturating point defined by Eq. (1).937

4.14.2 Scaling of Dimensions through Functional Sampling. In this section, we leverage the uniform ERM model to938

estimate dimensions within the context of functional sampling, specifically focusing on the estimation of squared939

pairwise covariance Ei ̸=j(C2
ij) and dimensionality.940

941

Adopting an approximation for a power-law kernel function f(x) ≈ ϵµ∥x∥−µ allows us to express the expected value942

of the squared covariance Ei ̸=j(C2
ij) as follows:943

Ei ̸=j(C2
ij) =

∫
[0,L]d

p(x⃗1)p(x⃗2)f2(∥x⃗1 − x⃗2∥)dx⃗1dx⃗2

≈
∫

[0,L]d
p(x⃗1)p(x⃗2)ϵ2µ∥x⃗1 − x⃗2∥−2µdx⃗1dx⃗2.

(31)

944

For a set subjected to functional sampling with a sampling fraction k, this procedure adjusts the size of the functional945

space in the ERM model by a factor of k−1/d. Consequently, the Eki ̸=j(C2
ij) for the sampled fraction k is given by:946
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4.14 Dimensions of three types of sampling procedures in ERM model

Eki ̸=j(C2
ij) =

∫
[0,k1/dL]d

p(x⃗1)p(x⃗2)f2(∥x⃗1 − x⃗2∥)dx⃗1dx⃗2

=
∫

[0,L]d
p(x⃗1)p(x⃗2)f2(k1/d∥x⃗1 − x⃗2∥)dx⃗1dx⃗2

≈
∫

[0,L]d
p(x⃗1)p(x⃗2)ϵ2µk−2µ/d∥x⃗1 − x⃗2∥−2µdx⃗1dx⃗2

≈ k−2µ/dEi ̸=j(C2
ij),

(32)

947

948

Here we assume that E[σ2] and E[σ4] are constant across the sampling process. This model enables the949

estimation of the ratio µ/d as detailed in the Methods section 4.8.1.950

DFSap
PR ≈ kN0E(σ2)2

E(σ4)+(kN0 −1)k−2µ/dEi ̸=j(C2
ij)

(33)

951

952

In the large N limit, we observe distinct behaviors in the evolution of dimensionality in both theory and data:953

it saturates in RSap (dashed line in Fig. 5D), namely DRSap
PR ≈ DPR defined in Eq. (1), whereas it follows a different954

scaling relationship DFSap
PR ≈ k2µ/dDPR in FSap (solid line in Fig. 5D).955

4.14.3 Comparative Analysis of PR Dimension Across sampling Techniques. This section examines the behavior of956

the Participation Ratio (PR) dimension under three sampling techniques: anatomical sampling, random sampling,957

and functional sampling. We show that the average PR dimension following anatomical sampling occupies a middle958

ground between the extremes presented by random and functional sampling.959

960

The PR dimension, denoted DPR, reflects the sampling impact and depends on the distribution p(X⃗) of the961

functional coordinates X⃗. Defining the sampling fraction as k = 1/q, the mean DPR is represented as:962

mean(DPR) = 1
q

q∑
i=1

DiPR = 1
q

q∑
i=1

J(pi(X⃗)), (34)

963

964

where the neuron set 1,2, ...,N is segmented into q clusters {X⃗1, X⃗2, ..., X⃗q}, each comprising N
q neurons.965

The probability distribution pi(X⃗) corresponds to each cluster {X⃗i}. The probability distribution for each cluster,966

pi(X⃗), emerges naturally from the sampling process.967

968

The equivalence of the mean probability density function across the sampled clusters to the original set’s969

probability density function leads us to the condition:970

1
q

q∑
i=1

pi(X⃗) = p(X⃗), (35)

971

972

This condition is a direct consequence of the sampling process, ensuring that the aggregated probability973

density function of all sampled sets mirrors the overall density distribution of the neurons.974

975

Applying the Lagrange multiplier method to optimize the mean DPR:976

L(p,λ) = 1
q

q∑
i=1

J(pi(X⃗))+
∫
D

ddX⃗λ(X⃗)
(

1
q

q∑
i=1

pi(X⃗)−p(X⃗)
)
, (36)

977

978

Here L(p,λ) is the Lagrangian, λ(X⃗) is the Lagrange multiplier, we derive the optimal condition:979

∂L(p,λ)
∂pi

= 0, (37)
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980

981

yielding:982

1
q

∂J

∂pi(X⃗)
+ λ(X⃗)

q
= 0. (38)

983

984

At the optimal mean DPR, each p(X⃗i) is equivalent, leading to p(X⃗i) = p(X⃗j) = p(X⃗) (representative of985

random sampling). Hence, the mean DPR post-random sampling sets the upper limit for the mean DPR after986

anatomical sampling.987

988

Let us investigate the lower bound of the mean PR dimension with the ERM model. For the minimization of989

mean(DPR), a key requirement is the functional spatial proximity of neurons within the same cluster, in other words,990

the neuron set should be distinctly separated in functional space. Consequently, achieving the minimum mean PR991

dimension necessitates a functional sampling strategy.992

4.14.4 Derive upper bound of dimension from spectrum. To deduce DPR from the spectrum, for simplicity, we focus993

on the high-density region, where we have an analytical expression for λ that is valid for large eigenvalues:994

λr = γ
( r
N

)−1+ µ
d ·ρ

µ
d = γr−1+ µ

dL−µN for r ≤ β(N), (39)

where L is the size of the functional space, γ is the coefficient in Eq. (3), which depends on d, µ, and E(σ2). Note995

that the eigenvalue λr decays rapidly after the threshold r = β(N). Since we did not discuss small eigenvalues in996

this article, we represent them here as an unknown function η(r,N,L):997

λr = η(r,N,L) for r > β(N) (40)

As discussed in section 4.5, without changing the properties of the spectrum, we can always impose E(σ2) = 1 such998

that999
N∑
r=1

λr = Tr(C) =N (41)

We emphasize that this constraint requires that large and small eigenvalues behave differently because otherwise1000 ∑N
r=1 r

−α with α < 1 would scale as N1−α, and
∑N
r=1λr is not proportional to N .1001

1002

Using the Cauchy–Schwarz inequality, we have an upper bound of
∑N
r=1λ

2
r:1003

N∑
r=1

λ2
r ≤

(∑
r

λr

)2

=N2 (42)

On the other hand, λ2
1 is a lower bound of

∑N
r=1λ

2
r:1004

N∑
r=1

λ2
r > λ2

1 = L−2µN2γ2 (43)

As a result, the dimensionality1005

DPR =

(∑N
r=1λr

)2

∑N
r=1λ

2
r

,

is bounded as1006

1 ≤DPR < L2µγ−2 (44)
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Under random sampling, L remains fixed. Thus, we must have a bounded dimensionality that is independent of N1007

for our ERM model. A tighter lower bound of
∑N
r=1λ

2
r is1008

N∑
r=1

λ2
r > γ2L−2µN2

β(N)∑
r=1

(
r−2+2µ/d

)
(45)

A tighter upper bound of participation ratio DPR can be written as:1009

DPR =

(∑N
r=1λr

)2

∑N
r=1λ

2
r

<
L2µγ−2∑β(N)

r=1
(
r−2+2µ/d

) < L2µγ−2 (46)

However, in functional sampling, enlarging the region size with constant density ρ results in L ∼ N1/d. Thus, the1010

upper bound ofDPR should grow asN2µ/d, consistent with the previously derived result (Eq. (33)) in section 4.14.2.1011

1012

4.14.5 Simulating CCA and anatomical sampling. In this section, we estimate the dimensions of the anatomically1013

sampled neuron set. For simplicity, we assume that the functional coordinates of neurons, Xi, and the anatomical1014

coordinates of neurons, Yi, both follow a multivariate Gaussian distribution. We define anatomical sampling, which1015

involves sampling on Yi, along a direction chosen arbitrarily and denote this direction as Y A. Subsequently, we1016

perform sampling on Xi in the direction denoted by XA, which is determined to have the highest correlation with1017

Y A according to Canonical Correlation Analysis (CCA). This process effectively mimics the scenario of functional1018

sampling.1019

1020

The key to calculating the PR dimension involves computing the expected value Ei ̸=j(C2
ij). In the ERM1021

model, the distribution of Cij can be estimated by the distribution of points in the functional space. This allows for1022

the calculation of the PR dimension across anatomical sampling by comparing the distribution of Xi after anatomical1023

sampling with that after functional sampling. We can model the distribution of XA and Y A as follows:1024

RASap = corr(XA,Y A),
CASap = corr(XA,Y A)σxσy,[
XA

Y A

]
∼ N

([
0
0

]
,

[
σ2
x CASap

CASap σ2
y

])
,

(47)

Here we consider only the projection of the functional coordinate onto the direction XA, which exhibits the highest1025

correlation, denoted by RASap, with Y A. Specifically, when selecting the anatomical direction as the first CCA1026

direction, the correlation between XA and Y A reaches its maximum, such that RASap = RCCA. In this case,1027

anatomical sampling results in the minimization of the dimensionality.1028

1029

Now, let us perform anatomical sampling on the neurons. The X⃗i and Y⃗i denote the functional and anatomical1030

coordinates of the ith neuron cluster after anatomical sampling, respectively.1031

1032

To approximate, we need to calculate the functional coordinate probability distribution p(X⃗i) = p(X⃗|qyik <1033

Y A < qy(i+1)k), which is the distribution of the ith neuron cluster after anatomical sampling. Y A represents the1034

selected direction in anatomical space, and qyik denotes the ikth quantile of Y A, where k is the sampled fraction.1035

Note the following relationships and distributions:1036

p(XA|Y A = y) = p(XA,Y A = y)
p(Y A = y) ,

p(XA|Y A = y) ∼ N
(
y
σx
σy
RASap,σ

2
x(1−R2

ASap)
)
.

(48)

p(XA
i ) = p(XA|qyik < Y A < qy(i+1)k) = 1

k

∫ q
y
(i+1)k

q
y
ik

p(XA|Y A = y)dy (49)

1037

1038

The conditional probability distribution P (XA|qyik < Y A < qy(i+1)k) is equivalent to the distribution of the sum1039
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4.14 Dimensions of three types of sampling procedures in ERM model

of Y Ai
σx
σy
RASap and X0, where X0 ∼ N (0,σ2

x(1−R2
ASap)):1040

XA
i = Y Ai

σx
σy
RASap +X0, (50)

p(Y Ai = y) =

 1
k

√
2πσy

exp
(

− y2

2σ2
y

)
for qyik < y < qy(i+1)k,

0 otherwise.
(51)

The computation of XA
i involves two technical challenges: 1. The distribution of Y Ai is represented by1041

a non-elementary function (Eq. (51)), which complicates the direct calculation of XA
i , which is the sum of1042

Y Ai RASapσx/σy and X0. To facilitate approximation, we model Y Ai using a normal distribution with equivalent1043

variance. 2. Calculating the variance of Y Ai presents direct challenges, and the variance of Y Ai differs across1044

different neuron clusters i. Using a uniform distribution for Y simplifies this task (this assumption is only used to1045

calculate the variance of Y Ai ). Under this assumption, the variance of Y Ai can be straightforwardly calculated as1046

Var(Y Ai ) = k2σ2
y. Consequently, we approximate Y Ai and XA

i as follows:1047

Y Ai ∼ N

(
qyik+ qy(i+1)k

2 ,k2σ2
y

)
, (52)

XA
i ∼ N

(
qyik+ qy(i+1)k

2
σx
σy
RASap,σ

2
x(1−R2

ASap +k2R2
ASap)

)
. (53)

1048

1049

Calculating the PR dimension directly from the distribution of XA
i is difficult; thus, we approximate anatomical1050

sampling with fraction k as functional sampling with fraction kf , leading to:1051

kf =
√

1+k2R2
ASap −R2

ASap. (54)

Using the equation for functional sampling Eki ̸=j(C2
ij) ≈ k−2µ/dEi ̸=j(C2

ij) (Eq. (32)):1052

Eki ̸=j(C2
ij) ≈ (1+k2R2

ASap −R2
ASap)−µ/dEi ̸=j(C2

ij). (55)

DASap
PR ≈ kN0E(σ2)2

E(σ4)+(kN0 −1)(1+k2R2
ASap −R2

ASap)−µ/dEi ̸=j(C2
ij)

(56)
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5 Supplementary figures1277

Figure S1. Related to Fig. 2. Experimental data description. A. Spatial distribution of segmented ROIs (shown in different
colors). There are 1347 to 3086 ROIs in each animal. Scale bar, 100 µm. B. Explained variance of the activity data by PCs up to
500 rank. The different colored lines represent different fish data (n=6).

Figure S2. The phenomenon of scale-invariant eigenspectra across different datasets. A-D. Distribution of normalized
pairwise covariances, where E(σ2

i ) = 1 (Methods). E-H. Sampled covariance eigenspectra of different datasets. I-L. Pdfs of
sampled covariance matrix eigenspectra of different datasets. The datasets correspond to the following examples: column 1: fish
data (from fish 1, all fish data are shown in Fig. S10A-F) from whole brain light-field imaging; column 2: fish data from whole brain
light-sheet imaging; column 3: mouse data from multi-area Neuropixels recording; column 4: mouse data from two-photon visual
cortex recording.

Wang et al. | Scale-invariant Covariance Spectrum | 36

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.02.23.529673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3. Comparison between ERM simulation and theory. A-C. Rank plots of the normalized eigenspectra (λ/ρ), with the
simulations obtained using correlation matrix (sim: corr, σ2

i = 1) and covariance matrix (sim: cov, neuron’s activity variance σ2
i

is i.i.d. sampled from a log-normal distribution with zero mean and a standard deviation of 0.5 in the natural logarithm of the σ2
i

values; we also normalize E(σ2
i ) = 1 (Methods)). The curves between "sim: corr" and "sim: cov" are nearly identical in panels

A and B. The theoretical predictions of normalized eigenvalues λ/ρ are obtained using the high-density theory (cyan, Eq. (12)).
The density ρ decreases from panel A to panel C (ρ = 1024,256,10.24 respectively). D-F. Numerical validation of the theoretical
spectrum by comparing probability density functions for increasing density of covariance ERM (ρ = 1024,256,10.24 respectively).
Other simulation parameters: N = 1024, d = 2, L = (N/ρ)1/d, µ = 0.5, ϵ = 0.03125. The ERM simulations were conducted 100
times. The results are presented as the mean ± SEM.
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Figure S4. Covariance spectra under different kernel functions f(x⃗). The figure presents both the sampled eigenvalue
rank plot and the pdf of ERM with different functions f(x⃗) and varying dimensions d, where panels A-D,I,J. display the rank plot

and panels E-H,K,L. show the pdf of ERM. A,E. Exponential function f(x⃗) = e− ∥x∥
b where b = 1 and dimension d = 2. B,F.

Exponential function f(x⃗) = e− ∥x∥
b where b = 1 and dimension d = 3. C,G. Gaussian pdf f(x⃗) = e

− ∥x∥2

2σ2
x where σ2

x = 0.1 and

dimension d = 2. D,H. Gaussian pdf f(x⃗) = e
− ∥x∥2

2σ2
x where σ2

x = 0.1 and dimension d = 3. I,K. t pdf (Eq. (11)) and dimension
d = 2. J,L. t pdf (Eq. (11)) and dimension d = 3. The ERM simulations were conducted 100 times and each ERM used an identical
sampling technique described in (Methods). The results represent mean ± SEM. M. Summary of CI’s for different f(x⃗) and d. On
the x-axis labels, ’e’ denotes the Exponential function f(x⃗), ’g’ denotes the Gaussian pdf f(x⃗), ’t’ denotes the t-distribution pdf
f(x⃗), while ’2’ and ’3’ indicate d = 2 or d = 3, respectively.
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Figure S5. Impact of η and d on the scale invariance of covariance eigenspectra in the ERM with f(x⃗) = e−∥x⃗∥η

. The
columns from left to right correspond to η = 0.3, 0.5, 0.7, 0.9, and the rows from top to bottom correspond to d = 1, 2, 3 (Eq. (2)
and Eq. (11)). Other ERM simulation parameters: N = 4096, ρ = 256, L = (N/ρ)1/d, ϵ = 0.03125 and σ2

i = 1. Each panel shows
a single ERM realization. For visualization purposes, the views in some panels are truncated since we use the same range for
the eigenvalues in all panels.

Figure S6. Impact of heterogeneous activity levels on the scale invariance. A. The CI as a function of the heterogeneity
of neural activity levels E(σ4

i ). We generate ERM where each neuron’s activity variance σ2
i is i.i.d. sampled from a log-normal

distribution where the logarithm of the variable follows a normal distribution with zero mean and a sequence of standard deviation
(0,0.05,0.1, . . . ,0.5) in the natural logarithm of the values σ2

i . We also normalize E(σ2
i ) = 1 (Methods). The solid blue line is the

average across 100 ERM simulations, and the shaded area represents the SD. The red line results from the Gaussian variational
method with simulation value integration limit qss . The green line is the result of the Gaussian variational method with high-density
value integration limit qhs (Methods). ρ0 = 128. B. Same as A, but with a smaller ρ0 = 10.24. Other parameters: µ = 0.5, d = 2,
N = 1024, L = (N/ρ)1/d, ϵ = 0.03125. C. The collapse index (CI) of the correlation matrix (filled symbols) is larger than that of
the covariance matrix (opened symbols) across different datasets excluding those shown in Fig. 4. We use 7,200 time frame data
across all the datasets. l2 to l3: light-sheet zebrafish data (2 Hz per volume); n2 to n3: Neuropixels mouse data, downsampled to
10 Hz per volume, p2 to p3: two-photon mouse data, (3 Hz per volume).
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Figure S7. Modifications of f(x⃗) near x = 0. The upper row illustrates the slow-decaying kernel function f(x⃗) (blue solid line)
and its power-law asymptote (red dashed line) along a 1D slice at various f(x⃗). The lower row is similar to A, but on the log-log
scale. The formulas for different f(x⃗)’s are listed in table S3 in Methods.

Figure S8. Comparisons of large eigenvalues across different smoothing interval sizes, ϵ. Rank plot (upper row) and pdf
(lower row) of the covariance eigenspectrum for ERMs with different f(x⃗). A. ϵ = 0.06. B. ϵ = 0.12. C. ϵ = 0.3. D. ϵ = 0.6. Other
ERM simulation parameters: N = 4096, ρ = 100, µ = 0.5, d = 2, L = 6.4, σ2

i = 1. The formulas for different f(x⃗)’s are listed in
table S3 in Methods.
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Figure S9. Factors that do not affect the scale invariance. A. Rank plot of the covariance eigenspectrum for ERMs with
different f(x⃗) (see table S3). Diagrams show different slow-decaying kernel functions f(x⃗) along a 1D slice. B. Same as A but
for different coordinate distributions in the functional space (see text). The diagrams on the right illustrate uniform and clustered
coordinate distributions. C. Same as A but for different geometries of the functional space (see text). Diagrams illustrate spherical
and hemispherical surfaces. D. CI of the different ERMs considered in A-C. The range on the y-axis is identical to Fig. 4C. On
the x-axis, 1: uniform distribution, 2: normal distribution, 3: log-normal distribution, 4: uniform two nearby clusters, 5: uniform two
faraway clusters, 6: uniform 3-cluster, 7: spherical surface in R3, 8: hemispherical surface in R3. All ERM models in B, C are
adjusted to have a similar distribution of pairwise correlations (Methods).

Figure S10. Fitting ERM to zebrafish data from our experiments (part 1). Comparison of sampled covariance eigenspectra in
fish data and fitted ERM models. The columns correspond to six light-field zebrafish data: fish 1 to fish 6. Number of time frames:
fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish 4 - 7318, fish 5 - 7200 and fish 6 - 9388. A-F. sampled covariance eigenspectra
for different fish data. G-L. Same as A-F but for ERM models with fitted parameters (µ/d, L), functional coordinates inferred
using MDS, and the experimental σi. M-R. Same as A-F but for ERM models with fitted parameters (µ/d, L), uniform distributed
functional coordinates, and a log-normal distribution of σ2. µ/d = [0.456,0.258,0.205,0.262,0.302,0.308] in fish 1-6.
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Figure S11. Fitting ERM to all six zebrafish data from our experiments (part 2). Comparison of the covariance matrix
between fish data and our fitted model. The columns correspond to six light-field zebrafish data: fish 1 to fish 6. A-F. The
covariance matrix of different fish data. G-L. The covariance matrix of ERM models with fitted parameters (µ, L) and functional
coordinates inferred using MDS and the experimental σi.

Figure S12. Fitting ERM to all six zebrafish data from our experiments (part 3). Columns correspond to five light-field
zebrafish data: fish 1 to fish 6. A-F: Comparison of the power-law kernel function f(x⃗) in the model (blue line) and the
correlation-distance relationship in the data (red line). The distance is calculated from the inferred coordinates using MDS.
The shaded area represents the SD. G-L: Same as A-D but on the log-log scale.
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Figure S13. Fitting ERM to all six zebrafish data from our experiments (part 4). Columns correspond to 6 light-field zebrafish
data: fish 1 to fish 6. A-F: CCA correlation between the first CCA variables with different embedding dimensions in the functional
space. Blue line indicates the CCA correlation of example fish data, green line shows the CCA correlation of example fish data
with shuffled functional coordinates, and error bars represent the SD.
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Figure S14. Relationship between the functional space and anatomical space for each zebrafish dataset from our
experiments. Columns correspond to five light-field zebrafish data: fish 1 to fish 5 (with fish 6 has been shown in Fig. 5).
A-E. Distribution of neurons in the functional space, where each neuron is color-coded by the projection of its coordinate along
the canonical axis b⃗1 in anatomical space (see text in Result section 2.4). Arrow: the first CCA direction a⃗1 in functional space.
F-J. Distribution of neurons in the anatomical space with the forebrain neuron located on the left side and the hindbrain neuron
on the right side. Each neuron is color-coded by the projection of its coordinate along the canonical axis a⃗1 in functional space
(see text in Result section 2.4). Arrow: the first CCA direction b⃗1 in anatomical space.
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Figure S15. The effects of hunting behavior on scale invariance and functional space organization. A,B. sampled
covariance eigenspectra of the data from fish 1 calculated from control (A) and hunting removed (B) data . Ctrl: We randomly
remove the same number of non-hunting frames. This process is repeated 10 times, and the mean±SD of the CI is shown in
the plot. Hunting removed: The time frames corresponding to the eye-converged intervals (putative hunting state) are removed
when calculating the covariance (Methods). The CI for the hunting-removed data appears to be statistically smaller than in the
control case (p-value= 1.5 × 10−9). C. Functional space organization of control data. The neurons are clustered using the
Gaussian Mixture Models (GMMs) and their cluster memberships are shown by the color. The color bar represents the proportion
of neurons that belong to each cluster. D. Similar to C but the functional coordinates are inferred from the hunting-removed data.
The color code of each neuron is the same as that of the control data (C), which allows for a comparison of the changes to the
clusters under the hunting-removed condition. See also the Movie. S1. E. Fold change in size / area (Methods) for each cluster
(top; the gray dashed line represents a fold change of 1, that is, no change in size) and the anatomical distribution of the most
dispersed cluster (bottom).

Wang et al. | Scale-invariant Covariance Spectrum | 45

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.02.23.529673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S16. Removing the time segment of hunting behavior does not obliterate the scale-invariant eigenspectra. Rows
correspond to 4 light-field zebrafish data: fish 2 to fish 5 (results for fish 1 have been shown in Fig. S15). A,C,E,G. Ctrl: we
randomly remove the same number of time frames that are not the putative hunting frames. We repeat this process 10 times to
generate 10 control covariance matrices and the CI is represented by mean±SD. B,D,F,H. Hunting removed: data obtained by
removing hunting frames from the full data (Methods). The CI for the hunting removed data appears to be significantly smaller
than that of the control case (one-sample t-test p = 2.2 × 10−10 in fish 2, p = 4.6 × 10−9 in fish 3, p = 1.7 × 10−9 in fish 4, and
p = 3.4 × 10−17 in fish 5).
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Figure S17. Hunting behavior reorganizes neurons in the functional space (continued on next page). Rows correspond to
5 light-field recordings of zebrafish engaged in hunting behavior: fish 1 to fish 5. A,D,G,J,M. (top) Functional space organization
of the control data inferred by fitting the ERM and MDS ( section 2.4). Neurons are clustered using the Gaussian Mixture Models
(GMMs) and their cluster memberships are shown by the color. The colorbar represents the proportion of neurons belonging to
each cluster. A,D,G,J,M. (bottom) The coordinate distribution of the cluster in control data which is most dispersed (i.e., largest
fold change in size, see below) after hunting-removal. The transparency of the dots (colorbar) is proportional to the probability of
the neurons belonging to this cluster (Methods). The cyan ellipse serves as a visual aid for the cluster size: it encloses 95% of
the neurons belonging to that cluster (Methods). B,E,H,K,N. (top) Similar to A,D,G,J,M. (top) but the functional coordinates are
inferred from the hunting-removed data. The color code of each neuron is the same as that in the control data, which allows for
a comparison of the changes to the clusters under the hunting-removed condition. B,E,H,K,N. (bottom) Similar to A,D,G,J,M.
(bottom) but the functional coordinates are inferred from the hunting-removed data. The transparency of each neuron is the same
as in A,D,G,J,M. (bottom), and it represents the probability pik (Methods) of neurons belonging to the most dispersed cluster k

in the control data. Likewise, the cyan ellipse encloses 95% of the neurons belonging to that cluster (Methods). C,F,I,L,O. Top,
size/area fold change (Methods) for each cluster (the gray dashed line represents a fold change of 1, i.e., no change in size);
bottom, the anatomical distribution of the neurons in the most dispersed cluster.
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Figure S17. Hunting behavior reorganizes neurons in the functional space (continued).
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Figure S18. Negative covariances do not affect the eigenspectrum of the zebrafish data. Red: eigenspectrum of the original
data covariance matrix. Blue: eigenspectrum of the covariance matrix with negative entries replaced by zeros. In this figure, all
neurons recorded in each fish were utilized without any sampling.
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Figure S19. Eigenspectra of RG-inspired clustering, direct functional region sampling (FSap), and random sampling
(RSap) in ERM. A,D. Renormalization-Group (RG) clustered eigenspectra of ERM. The size of the cluster is denoted by N ,
which is the number of neurons in each cluster. We adopt the RG approach (20, 67), but with a specific modification (Methods).
B,E. Direct spatial sampling in the functional space (FSap) and the corresponding ERM eigenspectra. We began our analysis with
a set of N0 neurons distributed in the functional space. Initially, we chose N = N0/2 neurons that were located exclusively on one
side of the x-axis of this space. We then proceeded to select N = N0/4 neurons from 4 quadrants. This sampling process was
repeated iteratively, generating successively smaller subsets of neurons. C,F. Random sampled (RSap) eigenspectra of ERM.
ERM parameters: A-C Exponential function f(x⃗) = e−∥x⃗∥/b where b = 1, ρ = 10.24 and dimension d = 2. D-F Approximate
power law Eq. (11) with µ = 0.5, ρ = 10.24 and dimension d = 2. Other parameters are the same as Fig. 3. The standard error
of the mean (SEM) across the clusters is represented by the shaded area of each line.
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Figure S20. Dimensionality (DPR) across sampling methods in fish data. A-F Result from fish 1 to fish 6: mean RSap DPR

(circles), mean (squares) and individual ASap DPR, and FSap’s most correlated cluster DPR (triangles). Dashed and solid lines
indicate RSap and uniform FSap theoretical predictions, respectively.

Figure S21. Dimensionality (DPR) across sampling methods in ERM. PR dimensionality result of ERM model, coordinate in
funcitonal and anatomical space are multivariate Gaussian distribution, the CCA correlation between funcitonal and anatomical
space are RCCA = 0.4,0.6,0.8 in A-C. Mean RSap DPR (circles), mean (squares) and individual ASap DPR, and FSap’s most
correlated cluster DPR (triangles). Dashed and solid lines indicate RSap and uniform FSap theoretical predictions, respectively.
ERM parameter: µ = 0.6, d = 2, functional coordinates follow a multivariate normal distribution with variance σ2

x1 = 2,σ2
x2 = 1,

anatomical coordinates follow a multivariate normal distribution with variance σ2
y1 = 1,σ2

y2 = 1,σ2
y3 = 1.

Wang et al. | Scale-invariant Covariance Spectrum | 52

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2023.02.23.529673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S22. Example of Renormalization Group (RG) approach for a set of eight neurons. The figure is adapted from (20).
The diagram illustrates the iterative clustering process for eight neurons. In each iteration, neurons are paired based on maximum
correlation, with their activities combined through summation and normalized to maintain unit mean for nonzero values. Each
neuron can only be paired once per iteration, ensuring all neurons are grouped by the iteration’s end.
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Figure S23. Morrell et al.’s latent variable model. A-D: Functional sampled (FSap) eigenspectra of the Morrell et al. model.
E-H: Random sampled (RSap) eigenspectra of the same model. Briefly, in Morrell et al.’s latent variable model (36, 52), neural
activity is driven by Nf latent fields and a place field. The latent fields are modeled as Ornstein-Uhlenbeck processes with a time
constant τ . The parameters ϵ and η control the mean and variance of individual neurons’ firing rates, respectively. The following
are the parameter values used. A,E: Using the same parameters as in (52): Nf = 10, ϵ = −2.67, η = 6, τ = 0.1. Half of the cells
are also coupled to the place field. B,C,D,F,G,H: Using parameters from (36): Nf = 5, ϵ = −3, η = 4. There is no place field.
The time constant τ = 0.1,1,10 for B,F, C,G, and D,H, respectively.

1278
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Figure S24. Scale-invariant properties persist across different temporal sampling rates in neural recordings. Analysis
of multi-area Neuropixels recordings (23) from 1024 neurons, downsampled to different rates resulting in 7200 time frames per
condition (6 Hz, 12 Hz, 18 Hz, and 24 Hz; columns 1-4 respectively). A-D. Distribution of pairwise covariances after normalization
to unit variance (E(σ2

i ) = 1, see Methods). E-H. Eigenvalue spectra of the covariance matrices, showing similar power-law scaling
across sampling rates. I-L. Probability density functions (PDFs) of the eigenvalues, demonstrating that the characteristic shape
of the distribution is preserved across different temporal resolutions.
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6 Supplementary note1279

In this appendix, we elaborate upon the sketch introduced in the Methods, and present a full derivation of the1280

covariance eigenspectrum of our ERM model, This section is organized as follows. First, we will briefly introduce1281

the relationship between the eigenvalue probability density distribution and the resolvent. Second, we will turn the1282

problem of calculating the resolvent to a calculation of the partition function using a field-theoretic representation1283

and proceed to manipulate the partition function using the replica method. Third, we will introduce two approximate1284

methods for calculating the partition function, leading to the high-density theory and the Gaussian variational method.1285

We will discuss the implications and predictions of each method. Finally, we will discuss the relationship between the1286

two methods and identify the parameter regime where the high-density theory agrees with the numerical simulation.1287

Notation Description

g(z) resolvent, Eq. (S2)

⟨...⟩ the average across realizations of C (i.e., random x⃗i’s and σ2
i ’s), Eq. (S1)

Ξ(z) Canonical partition function, Gaussian integral representation of the determinant [det(z−C)]−1/2, Eq. (S5)

ϕ intermediate variable for Gaussian integral representation Ξ(z), Eq. (S5)

ψ density field of ϕ

ψ̂ respective Lagrange multiplier fields of ψ

S1 the action in Ξ(z) (by analogy with the path integral formulation of quantum mechanics)

Sh the action in the high-density approximation of Ξ(z)

Sv the action in the variational approximation of Ξ(z)

A term in S1

f−1 the operator inverse of f , Eq. (S23)

G quadratic kernel in the Gaussian integral approximation of Ξ(z)

G−1 the operator inverse of G, same definition as f−1

G̃ the Fourier transform of G

Table S4. Table of notations.

6.1 Resolvent1288

The eigenvalues λn of a Hermitian matrix C are real. Their probability density function or eigendensity is formally1289

given by1290

p(λ) = 1
N

〈
N∑
n=1

δ(λ−λn)
〉
, (S1)

where ⟨...⟩ represents an average across different realizations of C. The eigendensity is connected with the resolvent1291

(34, 35)1292

g(z) = 1
N

〈
Tr 1
z−C

〉
= 1
N

〈
N∑
n=1

1
z−λn

〉
, (S2)
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we therefore compute the eigendensity using the standard inverse formula of Stieltjes tranform:1293

p(λ) = − 1
π

lim
η→0+

Im g(λ+ iη) (S3)

6.2 Field representation1294

In this section, we discuss a field-theoretical representation of the resolvent g(z). First, we rewrite Eq. (S2) as1295

g(z) = − 2
N
∂z

〈
ln
[
(det(z−C))−1/2

]〉
(S4)

The determinant (det(z−C))−1/2 can be represented as a Gaussian integral1296

Ξ(z) = (det(z−C))−1/2 = i−N/2
∫ +∞

−∞

dϕ1√
2π
...

dϕN√
2π

exp
[
− i

2ΦT (z−C)Φ
]
, (S5)

where Φ = [ϕ1, . . . ,ϕN ]T , and i≡
√

−1.1297

lnΞ(z) = ln
∫ +∞

−∞

dϕ1√
2π
...

dϕN√
2π

exp
[
− i

2ΦT (z−C)Φ
]

− iπN

4
(S6)

We thus establish a relationship between the resolvent and Ξ1298

g(z) = − 2
N
∂z ⟨lnΞ(z)⟩ (S7)

Note that the constant term in Eq. (S6) can be killed by ∂z and we will ignore it in the sequel. Eq. (S7) is the central1299

formula in this note. Ξ(z) is also called the partition function in statistical physics. We endeavor to find a way to1300

compute the average of lnΞ(z).1301

1302

Recall that in our ERM model (Result Eq. (2) and Fig. 3A), the covariance between neuron i and neuron j is1303

determined by the distance kernel function and their neural activity variances:1304

Cij = f(x⃗i− x⃗j)σiσj , (S8)

where x⃗i are sampled from a uniform coordinate distribution p(x⃗i) = 1/V ; σi are i.i.d. chosen from a probability1305

density distribution p(σ) and are independent of the neuron coordinates x⃗i. The ⟨...⟩ in Eq. (S7) is therefore an1306

average over all possible x⃗i and σi.1307

1308

In order to compute ⟨lnΞ(z)⟩, we apply the replica method based on a smart use of the identity1309

ln x= lim
n→0

xn−1
n

Eq. (S7) now becomes1310

g(z) = − 2
N
∂z

[
lim
n→0

1
n

⟨Ξn(z)−1⟩
]

= − 2
N
∂z

[
lim
n→0

1
n

ln ⟨Ξn(z)⟩
]

(S9)

The idea is to compute the right-hand side for finite and integer n and then perform the analytic continuation to n→ 0.1311

1312

Now we seek to determine the value of ⟨Ξn(z)⟩. It contains n copies (replicas) of the original system1313

⟨Ξn(z)⟩ = ( 1
2π )

Nn
2

∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

〈
exp

[
− i

2

n∑
α=1

ΦαT (z−C)Φα
]〉

. (S10)
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Writing it down explicitly, we have1314

⟨Ξn(z)⟩ = ( 1
2π )

Nn
2

∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

∫ L

−L

ddx⃗1
V

...
ddx⃗N
V

∫
p(σ1)dσ1...p(σN )dσN

exp

−zi

2

n∑
α=1

N∑
j=1

(ϕαj )2 + i

2

n∑
α=1

N∑
j,k=1

ϕαj ϕ
α
k f(x⃗j − x⃗k)σjσk


(S11)

In order to proceed further, we introduce the following auxiliary fields :1315

ψα(x⃗) =
N∑
j=1

ϕαj δ(x⃗− x⃗j) (S12)

Eq. (S12) can be represented as a following functional integral1316

1 =
∫ +∞

−∞

n∏
α=1

D[ψα]δF [ψα(x⃗)−
N∑
j=1

ϕαj δ(x⃗− x⃗j)] (S13)

δF [ψ] =
∫ +∞

−∞
D[ψ̂] exp[i

∫ +∞

−∞
ddx⃗ψ(x⃗)ψ̂(x⃗)] (S14)

or we can combine Eq. (S13) and Eq. (S14) as1317

1 =
∫ +∞

−∞

∫ +∞

−∞

n∏
α=1

D[ψ̂α]D[ψα] exp

i∫ +∞

−∞
ddx⃗[ψα(x⃗)−

N∑
j=1

ϕαj δ(x⃗− x⃗j)]ψ̂α(x⃗)

 (S15)

Using Eq. (S12), we can write the term 1
2

N∑
j,k=1

ϕαj ϕ
α
k f(x⃗j − x⃗k) in Eq. (S11) as1318

1
2

N∑
j,k=1

ϕαj ϕ
α
k f(x⃗j − x⃗k) = 1

2

∫ +∞

−∞
dx⃗dx⃗′f(x⃗− x⃗′)ψα(x⃗)ψα(x⃗′) (S16)

We insert the relation Eq. (S15) and Eq. (S16) into Eq. (S11),1319
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⟨Ξn(z)⟩ =( 1
2π )

Nn
2

∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

∫ L

−L

ddx⃗1
V

...
ddx⃗N
V

∫
p(σ1)dσ1...p(σN )dσN

exp

−zi

2

n∑
α=1

N∑
j=1

(ϕαj )2 + i

2

n∑
α=1

N∑
j,k=1

ϕαj ϕ
α
k f(x⃗j − x⃗k)σjσk


∫ +∞

−∞

∫ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp

i∫ +∞

−∞
ddx⃗(ψα(x⃗)−

N∑
j=1

ϕαj δ(x⃗− x⃗j)σj)ψ̂α(x⃗)


=( 1

2π )
Nn

2

∫ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α]
∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

∫ L

−L

ddx⃗1
V

...
ddx⃗N
V

∫
p(σ1)dσ1...p(σN )dσN

exp

−zi

2

n∑
α=1

N∑
j=1

(ϕαj )2 + i

2

n∑
α=1

N∑
j,k=1

ϕαj ϕ
α
k f(x⃗j − x⃗k)σjσk


exp

i n∑
α=1

∫ +∞

−∞
ddx⃗(ψα(x⃗)−

N∑
j=1

ϕαj δ(x⃗− x⃗j)σj)ψ̂α(x⃗)


=( 1

2π )
Nn

2

∫ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp
[
i

2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f(x⃗− x⃗′)ψα(x⃗)ψα(x⃗′)

]
∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

∫ L

−L

ddx⃗1
V

...
ddx⃗N
V

∫
p(σ1)dσ1...p(σN )dσN

exp

−zi

2

n∑
α=1

N∑
j=1

(ϕαj )2 + i

n∑
α=1

∫ +∞

−∞
ddx⃗(ψα(x⃗)−

N∑
j=1

ϕαj δ(x⃗− x⃗j)σj)ψ̂α(x⃗)


=( 1

2π )
Nn

2

∫ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp
[
i

2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f(x⃗− x⃗′)ψα(x⃗)ψα(x⃗′)

]

exp
[
i

n∑
α=1

∫ +∞

−∞
ddx⃗ψα(x⃗)ψ̂α(x⃗)

]
∫ +∞

−∞
(dϕ1

1...dϕn1 )...(dϕ1
N ...dϕnN )

∫ L

−L

ddx⃗1
V

...
ddx⃗N
V

∫
p(σ1)dσ1...p(σN )dσN

exp

−zi

2

n∑
α=1

N∑
j=1

(ϕαj )2 − i
n∑
α=1

∫ +∞

−∞
ddx⃗

N∑
j=1

ϕαj δ(x⃗− x⃗j)σjψ̂α(x⃗)



(S17)

Integrating the last term in Eq. (S17)1320

∫ +∞

−∞
dϕ1

i ...dϕni
∫ L

−L

ddri
V

∫
dσip(σi)exp

[
−zi

2

n∑
α=1

(ϕαi )2 − i
n∑
α=1

∫ +∞

−∞
ddrϕαi δ(r− ri)σiψ̂α(r)

]

=
∫ L

−L

ddri
V

∫ +∞

−∞
dϕ1

i ...dϕni
∫

dσip(σi)exp
[

−zi

2

n∑
α=1

(ϕαi )2 − i
n∑
α=1

ϕαi σiψ̂
α(ri)

]

= (2π
zi

)
n
2

∫ L

−L

ddri
V

∫
dσip(σi)exp

[
i

2z

n∑
α=1

ψ̂α(ri)2σ2
i

]

= (2π
zi

)
n
2

∫ L

−L

ddr
V

∫
dσp(σ)exp

[
i

2z

n∑
α=1

ψ̂α(r)2σ2

]
(S18)
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so that ⟨Ξn(z)⟩ from Eq. (S11) can be written as1321

⟨Ξn(z)⟩ =
∫ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α]ANeS0 (S19)

where A=
∫ L

−L

ddx⃗
V

(zi)− n
2

∫
dσp(σ)exp

[
i

2z

n∑
α=1

ψ̂α(x⃗)2σ2

]
(S20)

and S0 = i

2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f(x⃗− x⃗′)ψα(x⃗)ψα(x⃗′)+ i

n∑
α=1

∫ +∞

−∞
ddx⃗ψα(x⃗)ψ̂α(x⃗) (S21)

Integrating out the ψα in ⟨Ξn(z)⟩ Equations (S19) and (S21)1322

∫ +∞

−∞
D[ψα] exp

[
i

2

∫ +∞

−∞
dx⃗dx⃗′f(x⃗− x⃗′)ψα(x⃗)ψα(x⃗′)+ i

∫ +∞

−∞
ddx⃗ψα(x⃗)ψ̂α(x⃗)

]
= (2πi)N/2(detf)−1/2 exp

[
− i

2

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

] (S22)

Here f−1 is the inverse kernel satisfying:1323 ∫ +∞

−∞
dx⃗′′f(x⃗− x⃗′′)f−1(x⃗′′ − x⃗′) = δ(x⃗− x⃗′) (S23)

so that ⟨Ξn(z)⟩ can be written as1324

⟨Ξn(z)⟩ = (2πi)
Nn

2 (detf)−n/2
∫ +∞

−∞
D[ψ̂α]eS1

(S24)

S1 =N lnA− i

2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′) (S25)

The constant term (2πi) Nn
2 of ⟨Ξn(z)⟩ can be ignored because we should compute ∂z ⟨lnΞ(z)⟩ Eq. (S7) in the end.1325

1326

To ensure the mathematical rigor in section 6.4, Eq. (S42), we next apply the Wick rotation ψα(x⃗) → ψα(x⃗)e−iπ
41327

(section 6.7).1328

⟨Ξn(z)⟩ = (detf)−n/2
∫ +∞

−∞
D[ψ̂α]eS1 (S26)

S1 =N lnA− 1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′) (S27)

A=
∫ L

−L

ddx⃗
V

(z)− n
2

∫
dσp(σ)exp

[
1
2z

n∑
α=1

ψ̂α(x⃗)2σ2

]
(S28)

6.3 High-Density Expansion1329

In this section, we directly calculate the canonical partition function ⟨Ξn(z)⟩ in the z → ∞ limit by approximating1330

the term N lnA (Eq. (S27)) to a quadratic action, from which the partition function (Eq. (S26)) would become a1331

Gaussian integral.1332

1333

Let us first calculate the AN in z → ∞ limit1334
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lim
z→∞

A≈ (z)− n
2

∫
dσp(σ)

[
1+
∫ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α(x⃗)2σ2

]

= (z)− n
2

[
1+
∫

dσp(σ)σ2
∫ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α(x⃗)2

]

= (z)− n
2

[
1+E(σ2)

∫ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α(x⃗)2

]
(S29)

lim
z→∞

AN = lim
z→∞

(z)− Nn
2

[
1+NE(σ2)

∫ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α(x⃗)2

]

= lim
z→∞

(z)− Nn
2

[
1+NE(σ2)

n∑
α=1

∫ L

−L

ddx⃗
V

1
2z ψ̂

α(x⃗)2

]

≈ (z)− Nn
2 exp

[
E(σ2)

∫ L

−L

ddx⃗
V

N

2z

n∑
α=1

ψ̂α(x⃗)2

]
(S30)

Now let us calculate ⟨Ξn(z)⟩ (Equations (S26) to (S28)) by letting L→ ∞1335

⟨Ξn(z)⟩ = (detf)−n/2(z)− Nn
2

∫ +∞

−∞
D[ψ̂α]eSh

(S31)

where the high-density quadratic action1336

Sh = E(σ2)
∫ ∞

−∞

ddx⃗
V

N

2z

n∑
α=1

ψ̂α(x⃗)2 − 1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

= −1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′G−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

(S32)

where G−1(x⃗− y⃗) = f−1(x⃗− y⃗)− NE(σ2)
V z δ(x⃗− y⃗). Next, by integrating out the ψ̂ field, we find1337

⟨Ξn(z)⟩ = (detf)−n/2(z)− Nn
2

∫ +∞

−∞
D[ψ̂α]eSh

= (zN detf det(G−1))−n/2

(S33)

Using Eq. (S9) that connects the partition function with the resolvent, we have1338

g(z) = − 2
N
∂z

[
lim
n→0

1
n

ln
(

(det(zfG−1))−n/2
)]

= V

N
∂z

∫ +∞

−∞

ddk⃗
(2π)d

ln
(
z− NE(σ2)f̃(k⃗)

V

)

= 1
ρ

∫ +∞

−∞

ddk⃗
(2π)d

1
z−ρE(σ2)f̃(k⃗)

(S34)

where f̃(k⃗) is the Fourier transform of f(x⃗).1339

1340

Finally, the eigendensity p(λ) (Eq. (S3)) is given by1341
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p(λ) = − 1
π

lim
η→0+

Im(g(λ+ iη))

= 1
ρ

∫ +∞

−∞

ddk⃗
(2π)d

δ(λ−ρE(σ2)f̃(k⃗))

= 1
ρE(σ2)

∫ +∞

−∞

ddk⃗
(2π)d

δ

(
λ

E(σ2) −ρf̃(k⃗)
)

(S35)

6.3.1 Derivation of power-law eigenspectrum in high-density limit. Here we calculate the eigendensity of our model,1342

with the kernel function f(x⃗) (table S3). The Eq. (S35) (set E(σ2) = 1 as in Result section 2.2) can be written as:1343

p(λ) = Sd−1
(2π)d

∥k⃗0∥d−1

ρ2|f̃ ′(k⃗0)|
, ∥k⃗0∥ = f̃−1(λ

ρ
) (S36)

where Sd−1 is the surface area of d− 1 dimensional sphere. Here we consider the approximation f(x⃗) ≈ ϵµ∥x⃗∥−µ,1344

whose Fourier transform and its derivative are f̃(k⃗) = c0∥k⃗∥−(d−µ), f̃ ′(k⃗) = c1∥k⃗∥−(d−µ+1) and ∥k0∥ = f̃−1(λρ ) =1345

( λ
c0ρ

)− 1
d−µ . The constants are given by c0 = 2d−µπ

d
2 ϵµ

Γ( d−µ
2 )

Γ( µ
2 ) = ϵµc2, c1 = −(d−µ)c0, c2 = 2d−µπ

d
2

Γ( d−µ
2 )

Γ( µ
2 )1346

p(λ) = Sd−1
(2π)d

∥k⃗0∥d−1

ρ2|f̃ ′(k⃗0)|
= Sd−1

(2π)d
∥k⃗0∥2d−µ

ρ2|c1|

= Sd−1
(2π)d

c
d

d−µ

0
ρ2(d−µ) (λ

ρ
)− 2d−µ

d−µ = Sd−1
(2π)d

c
d

d−µ

2
d−µ

λ
− 2d−µ

d−µ (ρϵd)
µ

d−µ

(S37)

6.3.2 Derivation of eigenspectrum with exponential kernel function in high-density limit. Here we consider1347

the exponential kernel function f(x⃗) = e−b∥x⃗∥, whose Fourier transform and its derivative are f̃(k⃗) =1348

c1

(b2+∥k⃗∥2)
d+1

2
, f̃ ′(k⃗) = − (d+1)k⃗c1

(b2+∥k⃗∥2)− d+3
2

and ∥k0∥ = f̃−1(λρ ) =
√

( c1ρ
λ )

2
d+1 − b2, ∥k0∥2 + b2 = ( c1ρ

λ )
2

d+1 , where1349

c1 = 2dπ
d−1

2 bΓ(d+1
2 )1350

p(λ) = Sd−1
(2π)d

∥k⃗0∥d−1

ρ2|f̃ ′(k⃗0)|
= Sd−1

(2π)d
(b2 +∥k⃗0∥2)− d+3

2 ∥k⃗0∥d−1

ρ2|(d+1)k⃗0c1|

= Sd−1
(2π)d

( c1ρ
λ )− d+3

d+1 ∥k⃗0∥d−2

(d+1)ρ2|c1|
= Sd−1

(d+1)(2π)d
c

2
d+1
1 ρ

−d+1
d+1 λ− d+3

d+1 ∥k⃗0∥d−2

= Sd−1
(d+1)(2π)d

2
2d

d+1π
d−1
d+1 Γ(d+1

2 )
2

d+1 (ρb−d)
−d+1
d+1 λ− d+3

d+1 ((
2dπ

d−1
2 Γ(d+1

2 )ρb−d

λ
)

2
d+1 −1)

d−2
2

(S38)

It is straightforward to see that this spectrum is not scale invariant. For example, when d= 2, the above expression1351

reduces to a perfect power law spectrum p(λ) ∼ ρ
−d+1
d+1 λ− d+3

d+1 , which changes with scale over sampling.1352

6.4 Variational Approximation1353

To find a general approximation for the eigenspectrum that goes beyond the high-density limit, we use Gaussian1354

variational approximation in the field representation, namely by looking for the best quadratic action Sv,1355

Sv = −1
2

n∑
αβ

∫ +∞

−∞
dx⃗dx⃗′G−1

αβ(x⃗− x⃗′)ψ̂α(x⃗)ψ̂β(x⃗′), (S39)

to approximate the action S1 in the partition function (Equations (S26) to (S28)). This enables us to represent the1356

partition function by a Gaussian integral, which can be evaluated analytically. We find the best quadratic action Sv1357

by minimizing the difference between S1 and Sv, which is defined as KL divergence between two distributions that1358

are proportional to eS1 and eSv .1359

1360

1361
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In this section, we will proceed by using the grand canonical ensemble formulation, namely the average in Eq. (S1),1362

instead of using a fixed covariance matrix size N , which is now carried out across all different sizes. If N follows a1363

Poisson distribution, it is easy to show (section 6.8) that the grand canonical partition function is given by Eq. (S113):1364

Z =
∑
N

⟨ΞnN (z)⟩a
N

N ! ,

where a= ⟨N⟩. As a result, the new action S1 becomes1365

S1 =NA− 1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′).

(S40)

Here and below, N should be viewed as the average matrix size. The resolvent g(z) in Eq. (S9) can be similarly1366

generalized to Eq. (S114),1367

g(z) = lim
n→0

− 2
Nn

∂z lnZ

1368

1369

As in statistical physics, we define the free energy as1370

F1 = − lnZ =− ln
∫ +∞

−∞
D[ψ̂α]eS1

(S41)

We shall define the variational free energy Fv such that it would approximate the true free energy F1 by minimizing1371

DKL(Pv||P1),1372

Fv =DKL(Pv||P1)+F1
(S42)

where1373

P1 = eS1∫+∞
−∞ D[ψ̂α]eS1

(S43)

Pv = eSv∫+∞
−∞ D[ψ̂α]eSv

(S44)

The KL divergence DKL(Pv||P1) is always nonnegative and the free energy F1 is independent of the quadratic1374

action Sv. Therefore, we need to minimize the variational free energy Fv. Let us now examine the variational free1375

energy Fv1376

Fv =DKL(Pv||P1)+F1

= 1
Zv

∫ +∞

−∞
D[ψ̂α]eSv ln Pv

P1
− lnZ

= 1
Zv

∫ +∞

−∞
D[ψ̂α]eSv (Sv −S1 − ln

∫ +∞

−∞
D[ψ̂α]eSv +ln

∫ +∞

−∞
D[ψ̂α]eS1)− lnZ

= 1
Zv

∫ +∞

−∞
D[ψ̂α]eSv (Sv −S1)− lnZv

(S45)

Here Zv is the normalization factor1377

Zv =
∫ +∞

−∞
D[ψ̂α]eSv (S46)
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Since we want to minimize Fv, the constant term1378

1
Zv

∫ +∞

−∞
D[ψ̂α]eSvSv = const

(S47)

can be ignored, and Eq. (S45) is reduced to1379

Fv = − 1
Zv

∫ +∞

−∞
D[ψ̂α]eSvS1 − lnZv (S48)

To simplify the formula, let us introduce S21380

S2 = −1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

(S49)

and rewrite Eq. (S48) as1381

Fv = − 1
Zv

∫ +∞

−∞
D[ψ̂α]eSvS2 − 1

Zv

∫ +∞

−∞
D[ψ̂α]eSvNA− lnZv (S50)

Next, we will compute each term in the variational free energy Fv1382

First, we calculate the third term lnZv in Eq. (S50) by Equations (S39) and (S46)1383

lnZv =ln

∏
α,β

(2π)N/2(det(G−1
αβ))− 1

2


=
∑
α,β

1
2 lndet(Gαβ)+ n2N

2 ln(2π)

(S51)

Second, we calculate the first term 1
Zv

∫+∞
−∞ D[ψ̂α]eSvS2 in Eq. (S50)1384

1
Zv

∫ +∞

−∞
D[ψ̂α]eSvS2 = 1

Zv
lim
h→0

∂

∂h

∫ +∞

−∞
D[ψ̂α]eSv+hS2

= 1
Zv

lim
h→0

∂

∂h

∏
α=β

[
det(G−1

αβ +hf−1)
]− 1

2 ∏
α̸=β

[
det(G−1

αβ)
]− 1

2

= lim
h→0

∂

∂h

∏
α

[
det(I+hf−1Gαα)

]− 1
2

=
n∑
α

∂

∂h
lim
h→0

(1− h

2 Tr(f−1Gαα))

=−
n∑
α

1
2Tr(f−1Gαα)

(S52)

Third, we calculate the second term 1
Zv

∫+∞
−∞ D[ψ̂α]eSvNA in Eq. (S50), recall the term A (Eq. (S28))1385

A=
∫ L

−L

ddx⃗
V

(z)− n
2

∫
dσp(σ)exp

[
1
2z

n∑
α=1

ψ̂α(x⃗)2σ2

]
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1
Zv

∫ +∞

−∞
D[ψ̂α]eSvNA

=N(z)− n
2

Zv

∫
dσp(σ)

∫ +∞

−∞
D[ψ̂α]eSv

∫ L

−L

ddx⃗
V

exp
[

1
2z

n∑
α=1

ψ̂α(x⃗)2σ2

]

=N(z)− n
2

Zv

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∫ +∞

−∞
D[ψ̂α] exp

[
Sv + 1

2z

n∑
α=1

ψ̂α(x⃗)2σ2

]

=N(z)− n
2

Zv

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∏
α,β

[
det(Kαβ)

] 1
2

=N(z)− n
2

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∏
α,β

[
det(KαβG−1

αβ)
] 1

2

(S53)

where1386

Sv + 1
2z

n∑
α=1

ψ̂α(x⃗)2σ2 = −1
2

n∑
αβ

∫ +∞

−∞
dx⃗dx⃗′G−1

αβ(x⃗− x⃗′)ψ̂α(x⃗)ψ̂β(x⃗′)+ 1
2z

n∑
α=1

ψ̂α(x⃗)2σ2

= −1
2

n∑
αβ

∫ +∞

−∞
dx⃗dx⃗′K−1

αβ (x⃗− x⃗′)ψ̂α(x⃗)ψ̂β(x⃗′)

(S54)

K−1
αβ (x⃗, y⃗) =G−1

αβ(x⃗, y⃗)− σ2

z
δαβδ(x⃗− x⃗o)δ(y⃗− x⃗0)

det(K−1
αβGαβ) = 1− σ2

z
δαβG(x⃗0, x⃗0)

(S55)

1
Zv

∫ +∞

−∞
D[ψ̂α]eSvNA=N(z)− n

2

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∏
α,β

[
det(K−1

αβGαβ)
]− 1

2

=N(z)− n
2

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∏
α

[
det(K−1

ααGαα)
]− 1

2

=N(z)− n
2

∫
dσp(σ)

∫ L

−L

ddx⃗0
V

∏
α

(1− σ2

z
Gαα(x⃗0, x⃗0))− 1

2

=N(z)− n
2

∫
dσp(σ)

∏
α

(1− σ2

z
Gαα(0))− 1

2

=N(z)− n
2

∫
dσp(σ)exp(−1

2Trn ln(1− σ2

z

∫ ddk⃗
(2π)d

G̃(k⃗)))

(S56)
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In sum, the variational free energy Fv is equal to1387

Fv =
∑
α

1
2Tr(f−1Gαα)−

∑
α,β

1
2 ln(det(Gαβ))

−N(z)− n
2

∫
dσp(σ)exp(−1

2Trn ln(1− σ2

z

∫ ddk⃗
(2π)d

G̃(k⃗)))

=
∑
α

V

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

− V

2

∫ ddk⃗
(2π)d

∑
α,β

ln(G̃αβ(k⃗))

−N(z)− n
2

∫
dσp(σ)exp(−1

2Trn ln(1− σ2

z

∫ ddk⃗
(2π)d

G̃(k⃗)))

(S57)

Now let us find the best quadratic action Sv that minimizes the variational free energy Fv1388

δFv

δG̃αβ
= 0 (S58)

The solution of Eq. (S58) is given by1389

G̃−1
αβ(k⃗) = δαβG̃

−1(k⃗)
(S59)

1
f̃(k⃗)

−
∫

dσp(σ) ρσ2

z−σ2
∫

Dk⃗ G̃(k⃗)
− 1
G̃(k⃗)

= 0
(S60)

where
∫

Dk⃗ ≡
∫ ddk⃗

(2π)d . By using Eq. (S114)), we finally obtain1390

g(z) = lim
n→0

2
nN

∂

∂z
F1 ≈ lim

n→0

2
nN

∂

∂z
Fv =

∫
dσp(σ) 1

z−σ2
∫

Dk⃗ G̃(k⃗)
(S61)

6.5 Scale invariance of the covariance spectrum in the Gaussian variational Model1391

In section 2.2 (Result), we point to two factors that contribute to the scale-invariance of eigenspectrum using1392

the high-density theory. In this section, we show that the same conclusion can be drawn by using the Gaussian1393

variational method. Furthermore, we examine how the heterogeneity of neural activity influences the eigendensity1394

calculated by the Gaussian variational model. We show that ∂p(λ)
∂ρ , which characterizes the change of eigendensity1395

due to sampling in the functional space, decreases with the heterogeneity of neural activity described by higher-order1396

moment of neural activity variance, e.g., E(σ4).1397

1398

Let us rewrite Eq. (S60) as1399

G =
∫

Dk⃗ G̃(k⃗) =
∫

Dk⃗ f̃(k⃗)
1−M(z)f̃(k⃗)

M(z) =
∫

dσp(σ) ρσ2

z−σ2G(z)

(S62)

To present a formal expression for the eigendensity, let us define Re(G) ≡ gr, Im(G) ≡ gi. From Equations (S3)1400

and (S61), we find1401

p(λ,ρ) = 1
π

〈
σ2gi

(λ−σ2gr)2 +σ4g2
i

〉
σ

, (S63)

where ⟨...⟩σ =
∫
...p(σ)dσ.1402

1403

A direct computation of Eq. (S63), however, remains difficult: the complication arises from the complex function1404

M(z) in Eq. (S62), which in turn is an integral function of G. To streamline the calculation, let us further define1405
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Re(M) ≡ ρa, Im(M) ≡ ρb. Writing it down explicitly, we have1406

a=
〈

σ2(λ−σ2gr)
(λ−σ2gr)2 +σ4g2

i

〉
σ

(S64)

1407

b=
〈

σ4gi
(λ−σ2gr)2 +σ4g2

i

〉
σ

(S65)

The real and imaginary part of G can now be expressed as functions of a and b. Integrating Eq. (S62) in the spherical1408

coordinates, we have1409

gr(ρ) = Sd−1
(2π)d

∫ π/ϵ

π/L
dkkd−1 f̃(k)[1−ρaf̃(k)]

[1−ρaf̃(k)]2 +ρ2b2f̃2(k)

gi(ρ) = Sd−1
(2π)d

∫ π/ϵ

π/L
dkkd−1 ρbf̃2(k)

[1−ρaf̃(k)]2 +ρ2b2f̃2(k)

(S66)

where for clarity, we have abused the notation a bit by defining k = ∥k⃗∥; Sd−1 is the surface area of unit d-ball in the1410

momentum space. In order to evaluate the integrals analytically, we introduce an ultraviolet cutoff π/ϵ. Numerically,1411

whether integrating up to π/ϵ or greater than this bound shows little difference.1412

6.5.1 Numerical solution of the Gaussian variational method. With Equations (S63) to (S66), we numerically calculate1413

the eigendensity iteratively from the following steps:1414

• Step 1: set the initial values of a and b as a0 = 1, b0 = 11415

• Step 2: solve for a in Eq. (S64) with fixed b1416

• Step 3: solve for b in Eq. (S65) with fixed a1417

• Step 4: iterate Step 2 and Step 3 10 times1418

• Step 5: calculate p(λ) using Eq. (S63)1419

Note that we plug Eq. (S66) into Equations (S64) and (S65) in step 2-3.1420

6.5.2 Two contributing factors on the scale invariance. We next derive an analytical expression for Eq. (S66) by1421

considering the approximate power law kernel function f(x⃗) ≈ ϵµ∥x⃗∥−µ, µ > 0, from which the high-density theory1422

results on the scale invariance can be extended.1423

1424

By a change of variable x= f̃(k) ∼ ϵµk−(d−µ), and let xϵ ≡ f̃(πϵ ), xL ≡ f̃( πL ), we have1425

gi(ρ) ∼ ϵ
µd

d−µ

d−µ

∫ xL

xϵ

dx ρbx
− µ

d−µ

[1−ρax]2 +ρ2b2x2 , (S67)

where ∼ indicates that all constant numerical factors (e.g., π and Γ(d/2)) are ignored. To compute Eq. (S67), we1426

perform a branch cut at [0,∞], and perform a contour integral on the complex plane following the path in Fig. S25A.1427

When 0<β= 1− µ
d−µ < 2, the integral on the large circle ΓR and the small circle Γϵ goes to zero as xL → ∞,xϵ → 0,1428

leaving only two simple poles (zeros of the function in the denominator) in the complex plane. By applying the residue1429

theorem, we find an expression for gi in the limit L→ ∞, ϵ→ 01430

cosθ = − a√
a2 + b2

β = d−2µ
d−µ

gi ∼ − ϵ
µd

d−µ

d−µ

sin(β−1)θ
sinθ sinπβ

πbρ1−β

(a2 + b2)β/2

(S68)

The analytical expression for gr is a bit more involving.1431

gr(ρ) ∼ ϵ
µd

d−µ

d−µ

∫ xL

xϵ

dx x
− d

d−µ

[1−ρax]2 +ρ2b2x2 − a

b
gi (S69)
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It has two terms, the second term is similar to Eq. (S67); the first term, however, diverges as xϵ → 0. Thus, the radius1432

of the small circle Γϵ in Fig. S25A cannot shrink to zero: this is precisely the requirement of an ultraviolet cutoff in1433

the wave vector k⃗. The contour integral on the large circle ΓR, on the other hand, goes to zero as xL → ∞. Thus,1434

the integral on Γϵ contributes to the final result. By considering leading order term of xϵ for finite but small xϵ, we1435

find1436

cosθ = − a√
a2 + b2

γ = −µ
d−µ

gr ∼ − ϵ
µd

d−µ

d−µ

xγϵ
γ

− ϵ
µd

d−µ

d−µ

sin(γ−1)θ
sinθ sinπγ

πρ−γ

(a2 + b2)γ/2 − a

b
gi

(S70)

Recall xϵ ∼ ϵµ

(π/ϵ)d−µ , and we find that the first term in gr is proportional to πµ/µ, independent of ϵ.1437

Figure S25. Calculate gi and gr . A. The path of the contour integral for gi, gr (Eq. (S67)). B-C. The heatmap of gr and gi
with respect to λ and ρ. gi, gr in B, C are calculated by the numerical method (section 6.5.1). The parameters are N = 1024,
ρ = 10.24, d = 2, L = 10, µ = 0.5, ϵ = 0.03125. σ2

i is i.i.d. sampled from a log-normal distribution with zero mean and a standard
deviation of 0.5 in the natural logarithm of the σ2

i values; we also normalize E(σ2
i ) = 1.

According to Equations (S68) and (S70), one can immediately see that as µ/d→ 0, the ρ-dependence relationship1438

vanishes for gr and gi. We therefore conclude that a slower power-law decay in the kernel function and/or a higher1439

dimension of the functional space are two contributing factors for the scale-invariance of the covariance spectrum.1440

6.5.3 Heterogeneity of neural activity across neurons enhances scale invariance. Next, we take a more close look at1441

how the eigendensity changes with ρ for finite but small µ/d and when λ≫ 1. Using Eq. (S63), we have1442

∂p

∂ρ
= 1
π

〈
∂gi
∂ρ

σ2 [(λ−σ2gr)2 +σ4g2
i

]
−2σ6g2

i[
(λ−σ2gr)2 +σ4g2

i

]2 + ∂gr
∂ρ

2σ4gi(λ−σ2gr)[
(λ−σ2gr)2 +σ4g2

i

]2
〉
σ

(S71)

From numerical calculation, we find that typically gr ≫ gi, so one can use the approximation1443

∂p

∂ρ
≈ 1
π

〈
∂gi
∂ρ

σ2

(λ−σ2gr)2 +σ4g2
i

〉
σ

+ 1
π

〈
∂gr
∂ρ

2σ4gi
(λ−σ2gr)3

〉
σ

(S72)

Recall Eq. (S63)1444

p(λ,ρ) = 1
π

〈
σ2gi

(λ−σ2gr)2 +σ4g2
i

〉
σ

, (S73)

Since p(λ,ρ) is very small for large λ, a more appropriate measure is to examine1445

∂ logp
∂ρ

≡ 1
p

∂p

∂ρ
≈ ∂gi
∂ρ

1
gi

+2∂gr
∂ρ

〈
σ4

(λ−σ2gr)3

〉
σ〈

σ2
(λ−σ2gr)2

〉
σ

(S74)

Considering the large eigenvalue case λ≫ σ2gr (the numerical value of gr is on the order of 1), we perform Taylor1446

expansion and arrive at1447
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〈
σ2

(λ−σ2gr)2

〉
σ

≈
〈
σ2

λ2 + 2σ4gr
λ3 + 3σ6g2

r

λ4

〉
σ

(S75)

〈
σ4

(λ−σ2gr)3

〉
σ

≈
〈
σ4

λ3 + 3σ6gr
λ4

〉
σ

(S76)

Note ⟨σ2⟩σ ≡ E(σ2) is normalized to 1.1448

∂ logp
∂ρ

≈ ∂gi
∂ρ

1
gi

+2∂gr
∂ρ

〈
σ4

(λ−σ2gr)3

〉
σ〈

σ2
(λ−σ2gr)2

〉
σ

≈ ∂gi
∂ρ

1
gi

+2∂gr
∂ρ

〈
σ4〉

σ
+ 3gr

λ

〈
σ6〉

σ

λ+2gr ⟨σ4⟩σ + 3g2
r
λ ⟨σ6⟩σ

(S77)

By examining Equations (S68) and (S70), we find that when λ≫ gr, a≫ b, θ ≈ π, gr decays weakly with ρ while gi1449

increases weakly with ρ (also confirmed by numerical calculation, Fig. S25B,C)1450

∂gr
∂ρ

< 0, ∂gi
∂ρ

> 0.

It is therefore straightforward to see from Eq. (S77) that the higher-order moment (e.g., E(σ4)) in the activity variance1451

contributes to reducing the ρ-dependence in the eigendensity function.1452

6.5.4 The relationship between collapse index (CI) and eigendensity. In this section, we show how the collapse index1453

(CI) introduced in section 4.7 is related to Eq. (S77), namely how the eigendensity changes with the neuronal density1454

in the functional space. Recall the definition of CI in Eq. (13):1455

CI := 1
log(q0/q1)

∫ logq0

logq1

∣∣∣∣∂ logλ(q)
∂ logρ

∣∣∣∣dlogq

where1456

q(λ) =
∫ ∞

λ
p(λ)dλ

we used implicit differentiation to compute ∂ logλ(q)
∂ logρ . For clarity, we write the function q(λ,ρ) explicitly involving λ and1457

ρ as Q(λ,ρ) in Equations (S78) to (S80).1458

F (λ(q,ρ), q,ρ) =Q(λ(q,ρ),ρ)− q ≡ 0 (S78)

dF (λ(q,ρ), q,ρ)
dρ = ∂F (λ(q,ρ), q,ρ)

∂ρ
+ ∂F (λ(q,ρ), q,ρ)

∂λ

∂λ(q,ρ)
∂ρ

= 0 (S79)

∂λ(q,ρ)
∂ρ

= −
∂F (λ(q,ρ),q,ρ)

∂ρ

∂F (λ(q,ρ),q,ρ)
∂λ

= −
∂Q(λ(q,ρ),ρ)

∂ρ

∂Q(λ(q,ρ),ρ)
∂λ

(S80)

Now we can write CI as1459

∂ logλ(q,ρ)
∂ logρ = ρ

λ(q,ρ)
∂λ(q,ρ)
∂ρ

= − ρ

λ(q,ρ)

∂q(ρ,λ)
∂ρ

∂q(ρ,λ)
∂λ

(S81)

from which we arrive at Eq. (15) in Methods:1460

CI = 1
log(q0/q1)

∫ logq0

logq1

∣∣∣∣∂ logλ(q,ρ)
∂ logρ

∣∣∣∣dlogq = 1
log(q0/q1)

∫ q0

q1

∣∣∣∣∣− ρ

qλ

∂q
∂ρ

∂q
∂λ

∣∣∣∣∣dq
= 1

log(q0/q1)

∫ λ(q0)

λ(q1)

∣∣∣∣∣− ρ

qλ

∂q
∂ρ

∂q
∂λ

∣∣∣∣∣ ∂q∂λdλ= 1
log(q0/q1)

∫ λ(q1)

λ(q0)

∣∣∣∣ ρqλ ∂q∂ρ
∣∣∣∣dλ

(S82)
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Finally, we can rewrite CI as a function of ∂p∂ρ using a double integral:1461

CI = 1
log(q0/q1)

∫ λ(q1)

λ(q0)

∣∣∣∣ ρqλ ∂q∂ρ
∣∣∣∣dλ= 1

log(q0/q1)

∫ λ(q1)

λ(q0)
dλ1

∣∣∣∣ ρqλ1

∫ ∞

λ1

dλ2
∂p(λ2)
∂ρ

∣∣∣∣
= 1

log(q0/q1)

∫ λ(q1)

λ(q0)

1
λ1

dλ1

∣∣∣∣∣∣
∫∞
λ1

dλ2p(λ2)∂ lnp(λ2)
∂ lnρ∫∞

λ1
dλ2p(λ2)

∣∣∣∣∣∣
(S83)

6.6 Compare high-density theory and Gaussian variational method1462

This section aims to determine the conditions under which the high-density approximation aligns with the simulation1463

results. To this end, we begin by comparing the kernel operator G̃h(k⃗) in the high-density quadratic action and G̃v(k⃗)1464

in the variational approximation. We identify the condition when high-density theory would agree with the variational1465

method as well as the numerical simulation, namely z ≫
∫ ddk⃗

(2π)d G̃v(k⃗). Secondly, we give a precise re-derivation1466

of the high-density result by incorporating this condition into the variational approximation. Finally, we substitute1467 ∫ ddk⃗
(2π)d G̃v(k⃗) with

∫ ddk⃗
(2π)d G̃h(k⃗) and estimate the parameter regime where the high-density theory would agree with1468

numerical simulation. This analysis yields a deeper understanding of the relationship between high-density theory1469

and variational method, and how they relate to simulation results.1470

6.6.1 A simple comparison of the two methods. For the sake of simplicity, we consider the correlation matrix with1471

p(σ) = δ(σ−1) in this section. Returning to the explicit result (Equations (S26) to (S28)),1472

⟨Ξn(z)⟩ = (detf)−n/2(z)− Nn
2

∫ +∞

−∞
D[ψ̂α]eS1

(S84)

In the high-density approximation (Eq. (S32))1473

Sh =
∫ L

−L

ddx⃗
V

N

2z

n∑
α=1

ψ̂α(x⃗)2 − 1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

= −1
2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′G−1

h (x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

(S85)

Here we introduce Gh as the kernel operator in the high-density quadratic action.1474

G−1
h (x⃗− y⃗) = f−1(x⃗− y⃗)− N

V z
δ(x⃗− y⃗)

(S86)

Fourier transform of Gh leads to1475

G̃h(k⃗) = f̃(k⃗)
1− ρ

z f̃(k⃗)
(S87)

In the variational method (Eq. (S60)), we have1476

G̃v(k⃗) = f̃(k⃗)
1−Cf̃(k⃗)

, C = ρ

z−
∫ ddk⃗

(2π)d G̃v(k⃗)
,

(S88)

where we introduce Gv as the kernel operator in the variational quadratic action. Clearly, the condition that G̃v(k⃗)
approaches G̃h(k⃗) is given by

C → ρ

z
, z ≫

∫ ddk⃗
(2π)d

G̃v(k⃗)
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The function ratiov(z) is defined as:1477

ratiov(z) = 1
z

∫ ddk⃗
(2π)d

G̃v(k⃗)

As ratiov(z) approaches 0, G̃v(k⃗) becomes identical to G̃h(k⃗). Note that G̃v(k⃗) is difficult to compute; instead, we1478

can compute and analyze
∫ ddk⃗

(2π)d G̃h(k⃗) (see section 6.6.3)1479

ratioh(z) = 1
z

∫ ddk⃗
(2π)d

G̃h(k⃗) (S89)

6.6.2 A re-derivation of the high-density result using the grand canonical ensemble. In this section, we re-derive the1480

high-density result from the grand canonical ensemble and the variational method. The derivation also allows us to1481

reproduce the approximation condition discussed in the previous section.1482

1483

Let us recall the calculation of the free energy Fv (Eq. (S57)) in the variational approximation with p(σ) = δ(σ−1)1484

Fv =V

2 Trn
∫ ddk⃗

(2π)d
G̃(k⃗)
f̃(k⃗)

−N(z)− n
2 exp(−1

2Trn log(1− 1
z

∫ ddk⃗
(2π)d

G̃(k⃗)))

− V

2

∫ ddk⃗
(2π)d

∑
α,β

log(G̃αβ(k⃗))

=V n

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

−N(z)− n
2

[
1− 1

z

∫ ddk⃗
(2π)d

G̃(k⃗)
]− n

2

− V n

2

∫ ddk⃗
(2π)d

log G̃(k⃗)

(S90)

lim
n→0

Fv =V n

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

+ Nn

2 log
[
z−
∫ ddk⃗

(2π)d
G̃(k⃗)

]
− V n

2

∫ ddk⃗
(2π)d

log G̃(k⃗)+N
(S91)

Following Equations (S58) and (S60):1485

δFv

δG̃
= 0

(S92)

1
f̃(k⃗)

− ρ

z−
∫ ddk⃗

(2π)d G̃(k⃗)
− 1
G̃(k⃗)

= 0 (S93)

g(z) = lim
n→0

2
nN

d

dz
F1 ≈ lim

n→0

2
nN

d

dz
Fv = lim

n→0

2
nN

( ∂
∂z
Fv +

∫ ddk⃗
(2π)d

∂G̃(k⃗)
∂z

∂

∂G̃(k⃗)
Fv)

= lim
n→0

2
nN

∂

∂z
Fv = 1

z−
∫ ddk⃗

(2π)d G̃(k⃗)

(S94)

We can perform the same calculation in the high-density theory by considering the limit ratiov(z) =1486
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1
z

∫ ddk⃗
(2π)d G̃v(k⃗) → 0:1487

lim
n→0

lim
ratiov(z)→0

Fv =V n

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

+ Nn

2 log
[
z−
∫ ddk⃗

(2π)d
G̃(k⃗)

]

− V n

2

∫ ddk⃗
(2π)d

log G̃(k⃗)+N

=V n

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

+ Nn

2 log(z)− Nn

2
1
z

∫ ddk⃗
(2π)d

G̃(k⃗)

− V n

2

∫ ddk⃗
(2π)d

log G̃(k⃗)+N

(S95)

Therefore, we can define the free energy Fh in the high-density theory as1488

Fh =V n

2

∫ ddk⃗
(2π)d

G̃(k⃗)
f̃(k⃗)

+ Nn

2 log(z)− Nn

2
1
z

∫ ddk⃗
(2π)d

G̃(k⃗)− V n

2

∫ ddk⃗
(2π)d

log G̃(k⃗)+N
(S96)

then1489

δFh

δG̃
= 0

(S97)

1
f̃(k⃗)

− ρ

z
− 1
G̃(k⃗)

= 0 (S98)

This is precisely Eq. (S87) derived in the previous section.1490

g(z) ≈ lim
n→0

2
nN

∂

∂z
Fh = 1

z
+ 1
z2

∫ ddk⃗
(2π)d

G̃(k⃗)

=1
z

+ 1
z2

∫ ddk⃗
(2π)d

f̃(k⃗)
1− ρ

z f̃(k⃗)

=1
z

[
1+
∫ ddk⃗

(2π)d
f̃(k⃗)

z−ρf̃(k⃗)

]

=1
z

[
1
ρ

∫ ddk⃗
(2π)d

z−ρf̃(k⃗)
z−ρf̃(k⃗)

+
∫ ddk⃗

(2π)d
f̃(k⃗)

z−ρf̃(k⃗)

]

=1
ρ

∫ ddk⃗
(2π)d

1
z−ρf̃(k⃗)

(S99)

which is the resolvent of high-density approximation (Eq. (S34)).1491

6.6.3 compute
∫

G̃hdk . In this section, we provide an explicit expression for the integral
∫ ddk⃗

(2π)d G̃h(k⃗) instead of1492 ∫ ddk⃗
(2π)d G̃v(k⃗), which is implicit and can not be calculated analytically. Like the derivation in section 6.5, we consider1493

the lower and upper limits of integration for
∫ ddk⃗

(2π)d G̃h(k⃗) as [0, πϵ ]. We then approximate the Fourier transform f̃(k⃗)1494

as a power-law function. To ensure that the singularity f̃(k⃗s) = z
ρ of G̃h(k⃗) falls within the integration range of [0, πϵ ],1495

we introduce a simple correction xϵ = C(πϵ )µ−d to f̃(k⃗):1496

f̃(k⃗) = C∥k⃗∥µ−d−xϵ
(S100)
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where C =C0ϵ
µ, C0 = 2d−µπ

d
2

Γ( d−µ
2 )

Γ( µ
2 ) are all constants depending on the parameters d, µ, and ϵ. Then we compute1497

the contour integral (Fig. S25A) by Taylor expansion. As a result, we have1498

∫ ddk⃗
(2π)d

G̃h(k⃗) =
∫ π

ϵ

0

ddk⃗
(2π)d

f̃(k⃗)
1− ρ

z f̃(k⃗)

= 1
2π(µ−d)C

P z

ρ
(

∞∑
j=0

x1−P+j
ϵ ( zρ +xϵ)−1−j

1−P + j
−πcot(π(1−P ))(z

ρ
+xϵ)−P )

− 1
2π(µ−d)C

P z

ρ
(

∞∑
j=0

x1−P+j
ϵ ( zρ +xϵ)−1−j

−P + j
−πcot(π(−P ))(z

ρ
+xϵ)−P−1xϵ)

= 1
2π(d−µ)C

P z

ρ
(

∞∑
j=0

x1−P+j
ϵ ( zρ +xϵ)−1−j

(P −1− j)(P − j) −πcot(πP )(z
ρ

+xϵ)−P z

z+ρxϵ
)

= πd−1z

2(d−µ)ρϵd
(

∞∑
j=0

( z
ρxϵ

+1)−1−j

(P −1− j)(P − j) −πcot(πP )( z

ρxϵ
+1)−P z

z+ρxϵ
)

(S101)

where P = d
d−µ > 1.1499

1500

Now let us take a close look at the behavior of the function ratioh(z) (Eq. (S89)), plotted in Fig. S26A,B. For1501

small z, this function is negative. It then crosses zero and has a peak. As z → ∞, the ratioh approaches zero. This1502

is because Eq. (S101) approaches a positive constant, which is given by1503

lim
z→∞

∫ ddk⃗
(2π)d

G̃h(k⃗) = πd−1C2
2(d−µ)(P −1)P ,

where C2 =C(πϵ )µ. For z ≥ 1, we find the leading order expansion at j = 1 already gives an accurate approximation1504

(Fig. S26A,B).1505 ∫ ddk⃗
(2π)d

G̃h(k⃗) ≈

1
2π(d−µ)C

P z

ρ

[
x1−P
ϵ ( zρ +xϵ)−1

(P −1)(P ) +
x2−P
ϵ ( zρ +xϵ)−2

(P −2)(P −1) −πcot(πP )(z
ρ

+xϵ)− d
d−µ

z

z+ρxϵ

] (S102)
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Figure S26. Relationship between ratioh and z. A. ρ = 1024, B. ρ = 256. Blue line: ratioh calculated numerically. Red line:
100-order expansion of Eq. (S101), which perfectly overlaps with the blue line. Green line: expansion to the first order. Other
parameter: µ = 0.5, d = 2, ϵ = 0.03125. C. Relationship between ρϵd and dimension d with fixed µ

d (Eq. (S105)).

6.6.4 Estimate the parameter condition when the high-density theory best agrees with numerical simulation. By1506

analyzing the properties of the function
∫ ddk⃗

(2π)d G̃h(k⃗), we think the high-density theory provides an accurate1507

approximation when the zero-crossing of
∫ ddk⃗

(2π)d G̃h(k⃗) is near z = 1 (the peak of low-density result (34))1508
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The root z0 of the integral
∫ ddk⃗

(2π)d G̃h(k⃗) is given by1509

ρxϵ
z0

= g1(d,µ) (S103)

It is easy to see that g1(d,µ) is a function of P (or dµ ) from Eq. (S101). We can rewrite Eq. (S103) as1510

ρxϵ
z0

= g2( d
µ

) (S104)

Here, we can also see that z0 can be expressed as:

z0 = c0π
µ−dρϵd

g1(d,µ)

Using this expression for z0 and letting z0 = 1, we can derive the following equation for ρϵd, a dimensionless1511

parameter that determines the condition when the high-density theory is an accurate approximation of our ERM1512

model:1513

ρϵd =
z0g2( dµ )Γ(µ2 )

2d−µπµ− d
2 Γ(d−µ

2 )
(S105)

Fig. S26C shows how ρϵd changes as a function d for a small and fixed µ/d. For example, when d = 2, µ = 0.5,
ϵ= 0.03125, we find

ρϵd = 0.83, or ρ= 850

This estimate is also consistent with our numerical simulation (Fig. S3).1514

6.7 Wick rotation1515

To ensure mathematical rigor in section 6.4, we should make sure that the action S1 in Eq. (S43) is a real number.1516

Here we use Wick rotation to transform Eq. (S25) to Eq. (S27). The Gaussian integral Eq. (S26) can be divergent1517

when G−1(x⃗− y⃗) is not positive definite, To address this issue, we can always write the partition function ⟨Ξn(z)⟩ as1518

a Gaussian integral by choosing the appropriate axes with Wick rotation.1519

⟨Ξn(z)⟩ = (2πi)
Nn

2 (detf)−n/2
∫ +∞

−∞
D[ψ̂α]eS1

(S106)

S1 =N lnA− i

2

n∑
α=1

∫ +∞

−∞
dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′)

We can now change the integration variables by diagonalizing ψ̂α to ψ̃α via ψ̃α = Qψ̂α ,where Q is Fourier base1520

⟨Ξn(z)⟩ = (2πi)
Nn

2 (detf)−n/2
∫ +∞

−∞
D[ψ̃α]eS1

(S107)

S1 =N ln Ã− i

2

n∑
α=1

∫ +∞

−∞
ddk⃗f̃−1(k⃗)ψ̃α(k⃗)2

Ã=
∫ ∞

−∞

ddk⃗
V

(z)
n
2 exp

[
i

2z

n∑
α=1

ψ̃α(k⃗)2

]
(S108)

by letting L→ ∞. Note that eS1 is analytic. Thus if1521

lim
ψ̃α→(1−i)∞

eS1 = 0

and the convergence rate is faster than 1/ψ̃2, we can apply the Wick rotation ψα(x⃗) → ψα(x⃗)e−iπ
4 : instead of1522
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Im

Re
C1

C2

C3

Figure S27. Wick rotation in complex plane

computing the integral on the real axis C1, we now rotate the integral line 45 degree clockwise to C3 in the complex1523

plane:1524

∫
C1

D[ψ̂α]eS1 =
∫
C3

D[ψ̂α]eS1
(S109)

On the other hand, if
lim

ψ̃α→(1+i)∞
eS1 = 0

and the convergence rate is faster than 1/ψ̃2, we can apply the Wick rotation ψα(x⃗) → ψα(x⃗)eiπ
4 , namely to rotate1525

the integral line 45 degree counterclockwise to C2:1526

∫
C1

D[ψ̂α]eS1 =
∫
C2

D[ψ̂α]eS1
(S110)

As a simple example, consider a one-dimensional Gaussian integral1527 ∫ ∞

−∞
dxe−ikx2

When k > 0, we can use the Wick rotation x→ xe−iπ
41528 ∫ ∞

−∞
dxe−ikx2

= e−iπ
4

∫ ∞

−∞
dxe−kx2

= e−iπ
4

√
2π
k

=
√

2π
ik

When k < 0, we can use the Wick rotation x→ xei
π
41529 ∫ ∞

−∞
dxe−ikx2

= ei
π
4

∫ ∞

−∞
dxekx

2
= ei

π
4

√
2π
−k

=
√

2π
ik

Without loss of generality, we rotate ψα(x⃗) → ψα(x⃗)e−iπ
4 in section 6.4 for subsequent calculations.1530
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6.8 Grand Canonical Ensemble1531

When using the Gaussian variational Approximation, we consider a critical extension from the canonical ensemble1532

to the grand canonical ensemble when computing the partition function (Eq. (S6)). We would like to justify this1533

approximation in this section. Recall that the resolvent is given by1534

g(z) = − 2
N
∂z ⟨lnΞ(z)⟩

where Ξ(z) can be viewed as the canonical partition function, the ⟨...⟩ is the average over all random matrices C for1535

a given N . Let us now generalize (Eq. (S6)) into grand canonical ensemble, namely1536

g(z) =
〈

− 2
N
∂z ⟨lnΞ(z)⟩

〉
N

(S111)

where
〈
...
〉
N

indicates that we need to average over all possible random matrices and across all possible N , with1537

the probability to have a matrix size N given by the Poisson distribution P (N) = e−a aN

N ! , where a= ⟨N⟩. When ⟨N⟩1538

is large, P (N) has a very sharp peak at ⟨N⟩, and Eq. (S111) can be approximated as1539

g(z) ≈ − 2
⟨N⟩

∂z ⟨lnΞ(z)⟩⟨N⟩ (S112)

Using the replica trick, we recall Eq. (S9)1540

g(z) = lim
n→0

− 2
Nn

∂z ln ⟨Ξn(z)⟩

Let us now define the grand canonical partition function as1541

Z =
∞∑
N=0

⟨ΞnN (z)⟩a
N

N ! , (S113)

Likewise, the resolvent in Eq. (S9) is generalized to1542

g(z) = lim
n→0

− 2
⟨N⟩n

∂z lnZ. (S114)

To see whether this definition makes sense, we write1543

g(z) = lim
n→0

− 2
⟨N⟩n

∑∞
N=0 ∂z⟨ΞnN (z)⟩aN/N !

Z

= lim
n→0

− 2
⟨N⟩n

∑∞
N=0 ∂z[1+n⟨lnΞN (z)⟩]aN/N !∑∞

N=0⟨ΞnN (z)⟩aN

N !

= − 2
⟨N⟩

∑∞
N=0 ∂z⟨lnΞN (z)⟩aN/N !∑∞

N=0
aN

N !

= − 2
⟨N⟩

∂z

〈
lnΞ(z)

〉
N
,

(S115)

where the second equality uses the identity

lnΞ = lim
n→0

Ξn−1
n

,

and the last equality is indeed Eq. (S112) discussed earlier.1544

1545

Returning back to the explicit form of the grand canonical partition function in our ERM model (Equations (S26)1546

to (S28)), we have1547

Z =
∫ +∞

−∞
D[ψ̂α]eS0+aA =

∫ +∞

−∞
D[ψ̂α]eS0+⟨N⟩A. (S116)

Here ψ is the auxiliary fields (Eq. (S12)), S0 = −1
2

n∑
α=1

∫+∞
−∞ dx⃗dx⃗′f−1(x⃗− x⃗′)ψ̂α(x⃗)ψ̂α(x⃗′) and A are terms defined1548
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in Equations (S26) to (S28). Eq. (S116) is used in section 6.4 to compute the free energy.1549

6.9 E-I balanced asynchronized model Summary1550

In this section, we discuss the E-I balanced asynchronized model (53), which predicts a different scaling D N under1551

random sampling, since the variance Eki ̸=j(c2
ij) scales as 1/N and diminishes as N approaches large limit.1552

6.9.1 Model. The simulation of binary networks involves updating neuron states within a network architecture identical1553

to analytical studies. The update rule is probabilistic, with neuron activities set based on synaptic currents and a firing1554

threshold. The dynamics resolution improves with network size, with neuron time constants effectively representing1555

changes in firing activity. Parameters for simulations include connection probabilities, mean rates, thresholds, and1556

synaptic strengths, scaled appropriately for network size.1557

Update Rule: σαi (t+1) = Θ
(∑

j J
αβ
ij σ

β
j (t)−θαi

)
1558

1559

Dynamics Resolution: dt= τ
3N1560

1561

In the simulation of binary networks, the model’s dynamics are governed by a set of parameters, each with a1562

specific role:1563

σαi (t+1): This represents the state of neuron i in population α at the next time step t+1. The state is binary, where1564

1 indicates the neuron is active (firing) and 0 indicates it is inactive.1565

Θ(·): The Heaviside step function used in the update rule. It determines the neuron’s next state by comparing the1566

net input to the neuron against its firing threshold. If the net input exceeds the threshold, the neuron’s state is set to1567

active; otherwise, it remains or becomes inactive.1568 ∑
j J

αβ
ij σ

β
j (t): This sum represents the total synaptic input to neuron i from all neurons j in population β at time t.1569

Jαβij is the synaptic weight from neuron j in population β to neuron i in population α, and σβj (t) is the state of neuron1570

j at time t.1571

θαi : The firing threshold of neuron i in population α. It is the value against which the net synaptic input is compared1572

to determine whether neuron i will fire (transition to state 1) or not (remain in state 0).1573

1574

α = {E,I}, β = {E,I,X}: Represents a specific population of neurons within the network. E: excitatory1575

neurons, I: inhibitory neurons, or X: external source of neurons that provide inputs to the network but are not1576

influenced by the network’s internal dynamics.1577

6.9.2 Firing Rate Correlation r. The mean firing rate correlation E(r) scales inversely with the network size N ,1578

specifically, E(r) ∼ 1/N . The standard deviation σr of r decays only as 1/
√
N (53).1579

Given that the variance of r, denoted as Var(r), is b
N , and the expected value of r, denoted as E(r), is a

N , where1580

N is the sample size, and a and b are constants, we aim to calculate E(r2), the expected value of the square of the1581

correlation coefficient r.1582

The term Eki ̸=j(c2
ij) in PR dimension is given by:1583

Var(r) = E(r2)− [E(r)]2 (S117)

Substituting Var(r) = b
N and E(r) = a

N into the equation, we get:1584

Eki ̸=j(c2
ij) = E(r2) = b

N
+
( a
N

)2
∼ 1
N

(S118)

Thus in PR dimensionDPR(C) = N2(E[σ2])2

NE[σ4]+N(N−1)Ei̸=j [c2
ij

] , the termNE[σ4] andN(N−1)Ei ̸=j [c2
ij ] are of the same1585

order, and the PR dimension will not reach the upper bound (E[σ2])2

Ei̸=j [c2
ij

] .1586
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Supplementary videos1587

Movie S1. Neural activity patterns in anatomical and functional space during hunting (click here). Single-trial examples of
fish 1 and fish 3. A. Inferred firing rate activity in anatomical space. Scale bar, 100 µm. B. Inferred firing rate activity in functional
space. Functional space organization of the control data inferred by fitting the ERM and MDS in section 2.4. The cyan ellipse
serves as a visual aid for the cluster size: it encloses 95% of the neurons belonging to that cluster (Methods). The inset illustrates
the functional space organization, similar to that shown in Fig. S15C. The colorbars in panels A and B depict the inferred activity
magnitude of individual neurons. C. Simultaneous behavior recording alongside the neural activity.
Time, seconds.
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