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eLife Assessment
This important study shows a surprising scale-invariance of the covariance spectrum of large-scale 
recordings in the zebrafish brain in vivo. A convincing analysis demonstrates that a Euclidean 
random matrix model of the covariance matrix recapitulates these properties. The results provide 
several new and insightful approaches for probing large-scale neural recordings.

Abstract Understanding neural activity organization is vital for deciphering brain function. By 
recording whole-brain calcium activity in larval zebrafish during hunting and spontaneous behav-
iors, we find that the shape of the neural activity space, described by the neural covariance spec-
trum, is scale-invariant: a smaller, randomly sampled cell assembly resembles the entire brain. This 
phenomenon can be explained by Euclidean Random Matrix theory, where neurons are reorganized 
from anatomical to functional positions based on their correlations. Three factors contribute to the 
observed scale invariance: slow neural correlation decay, higher functional space dimension, and 
neural activity heterogeneity. In addition to matching data from zebrafish and mice, our theory and 
analysis demonstrate how the geometry of neural activity space evolves with population sizes and 
sampling methods, thus revealing an organizing principle of brain-wide activity.

Introduction
Geometric analysis of neuronal population activity has revealed the fundamental structures of neural 
representations and brain dynamics (Churchland et al., 2012; Zhang et al., 2023; Kriegeskorte and 
Wei, 2021; Chung and Abbott, 2021). Dimensionality reduction methods, which identify collective or 
latent variables in neural populations, simplify our view of high-dimensional neural data (Cunningham 
and Yu, 2014).Their applications to optical and multi-electrode recordings have begun to reveal 
important mechanisms by which neural cell assemblies process sensory information (Stringer et al., 
2019a; Si et al., 2019), make decisions (Mante et al., 2013; Yang et al., 2022), maintain working 
memory (Xie et al., 2022) and generate motor behaviors (Churchland et al., 2012; Nguyen et al., 
2016; Lindén et al., 2022; Urai et al., 2022).
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In the past decade, the number of neurons that can be simultaneously recorded in vivo has grown 
exponentially (Buzsáki, 2004; Ahrens et al., 2012; Jun et al., 2017; Stevenson and Kording, 2011; 
Nguyen et  al., 2016; Sofroniew et  al., 2016; Lin et  al., 2022; Meshulam et  al., 2019; Demas 
et al., 2021). This increase spans various brain regions (Musall et al., 2019; Stringer et al., 2019a; 
Jun et al., 2017) and the entire mammalian brain (Stringer et al., 2019b; Kleinfeld et al., 2019). As 
more neurons are recorded, the multidimensional neural activity space, with each axis representing a 
neuron’s activity level (Figure 1A), becomes more complex. The changing size of observed cell assem-
blies raises a number of basic questions. How does this space’s geometry evolve and what structures 
remain invariant with increasing number of neurons recorded?

A key measure, the effective dimension or participation ratio (denoted as DPR, Figure 1B), captures 
a major part of variability in neural activity (Recanatesi et  al., 2019; Litwin-Kumar et  al., 2017; 
Gao et al., 2017 ; Clark et al., 2023; Dahmen et al., 2020). How does DPR vary with the number 
of sampled neurons (Figure  1A)? Two scenarios are possible: DPR grows continuously with more 
sampled neurons; DPR saturates as the sample size increases. Which scenario fits the brain? Further-
more, even if two cell assemblies have the same DPR, they can have different shapes (the geometric 
configuration of the neural activity space, as dictated by the eigenspectrum of the covariance matrix, 
Figure 1C). How does the shape vary with the number of neurons sampled? Lastly, are we going to 
observe the same picture of neural activity space when using different recording methods such as two-
photon microscopy, which records all neurons in a brain region, versus Neuropixels (Jun et al., 2017), 
which conducts a broad random sampling of neurons?

Here, we aim to address these questions by analyzing brain-wide Ca2+ activity in larval zebrafish 
during hunting or spontaneous behavior (Figure 2A) recorded by Fourier light-field microscopy (Cong 
et al., 2017). The small size of this vertebrate brain, together with the volumetric imaging method, 
enables us to capture a significant amount of neural activity across the entire brain simultaneously. To 
characterize the geometry of neural activity beyond its dimensionality DPR, we examine the eigen-
values or spectrum of neural covariance (Hu and Sompolinsky, 2022; Figure 1C). The covariance 
spectrum has been instrumental in offering mechanistic insights into neural circuit structure and 
function, such as the effective strength of local recurrent interactions and the depiction of network 
motifs (Hu and Sompolinsky, 2022; Morales et al., 2023; Dahmen et al., 2020). Intriguingly, we 
find that both the dimensionality and covariance spectrum remain invariant for cell assemblies that 
are randomly selected from various regions of the zebrafish brain. We also verify this observation 
in datasets recorded by different experimental methods, including light-sheet imaging of larval 
zebrafish (Chen et al., 2018), two-photon imaging of mouse visual cortex (Stringer et al., 2019b), 
and multi-area Neuropixels recording in the mouse (Stringer et al., 2019b). To explain the observed 
phenomenon, we model the covariance matrix of brain-wide activity by generalizing the Euclidean 
Random Matrix (ERM) (Mézard et al., 1999) such that neurons correspond to points distributed in a 
d-dimensional functional or feature space, with pairwise correlation decaying with distance. The ERM 
theory, studied in theoretical physics (Mézard et al., 1999Goetschy and Skipetrov, 2013), provides 
extensive analytical tools for a deep understanding of the neural covariance matrix model, allowing us 
to unequivocally identify three crucial factors for the observed scale invariance.

Building upon our theoretical results, we further explore the connection between the spatial 
arrangement of neurons and their locations in functional space, which allows us to distinguish among 
three sampling approaches: random sampling, anatomical sampling (akin to optical recording of all 
neurons within a specific region of the brain) and functional sampling (Meshulam et al., 2019). Our 
ERM theory makes distinct predictions regarding the scaling relationship between dimensionality and 
the size of cell assembly, as well as the shape of covariance eigenspectrum under various sampling 
methods. Taken together, our results offer a new perspective for interpreting brain-wide activity and 
unambiguously show its organizing principles, with unexplored consequences for neural computation.

Results
Geometry of neural activity across random cell assemblies in zebrafish 
brain
We recorded brain-wide Ca2+activity at a volume rate of 10 Hz in head-fixed larval zebrafish (Figure 2A) 
during hunting attempts (Methods) and spontaneous behavior using a Fourier light-field microscopy 

https://doi.org/10.7554/eLife.100666
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Figure 1. The relationship between the geometric properties of the neural activity space and the size of neural assemblies. (A) Illustration of how 
dimensionality of neural activity (DPR) changes with the number of recorded neurons. (B) The eigenvalues of the neural covariance matrix dictate 
the geometrical configuration of the neural activity space with 

√
λi being the distribution width along a principal axis. (C) Examples of two neural 

populations with identical dimensionality (DPR = 25/11 ≈ 2.27) but different spatial configurations, as revealed by the eigenvalue spectrum (green: 
{λi} = {7, 7, 1}, blue: {λi} = {9, 3, 3}).

https://doi.org/10.7554/eLife.100666
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Figure 2. Whole-brain calcium imaging of zebrafish neural activity and the phenomenon of its scale-invariant covariance eigenspectrum. (A) Rapid light-
field Ca2+ imaging system for whole-brain neural activity in larval zebrafish. (B) Inferred firing rate activity from the brain-wide calcium imaging. The ROIs 
are sorted by their weights in the first principal component (Stringer et al., 2019b). (C) Procedure of calculating the covariance spectrum on the full 
and sampled neural activity matrices. (D) Dimensionality (circles, average across eight samplings (dots)), as a function of the sampling fraction. The curve 
is the predicted dimensionality using Equation 5. (E) Iteratively sampled covariance matrices. Neurons are sorted in each matrix to maximize values 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.100666
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(Cong et al., 2017). Approximately 2000 ROIs (1977.3 ± 677.1, mean ± SD) with a diameter of 16.84 
± 8.51 µm were analyzed per fish based on voxel activity (Methods, Figure 2—figure supplement 1). 
These ROIs likely correspond to multiple nearby neurons with correlated activity. Henceforth, we refer 
to the ROIs as ‘neurons’ for simplicity.

We first investigate the dimensionality of neural activity DPR (Figure 1B) in a randomly chosen cell 
assembly in zebrafish, similar to multi-area Neuropixels recording in a mammalian brain. We focus on 
how DPR changes with a large sample size N . We find that if the mean squared covariance remains 
finite instead of vanishing with N , the dimensionality DPR (Figure 1B) becomes sample size indepen-
dent and depends only on the variance σ2

i  and the covariance Cij between neurons i and j:

	
lim

N→∞
DPR = E(σ2

i )2

Ei ̸=j(C2
ij)

,
�

(1)

where E(. . . ) denotes average across neurons (Methods and Dahmen et al., 2020). The finite mean 
squared covariance condition is supported by the observation that the neural activity covariance Cij 
is positively biased and widely distributed with a long tail (Figure 2—figure supplement 2A). As 
predicted, the data dimensionality grows with sample size and reaches the maximum value specified 
by Equation 1 (Figure 2D).

Next, we investigate the shape of the neural activity space described by the eigenspectrum of the 
covariance matrix derived from the activity of N  randomly selected neurons (Figure 2C). When the 
eigenvalues are arranged in descending order and plotted against the normalized rank r/N , where 
r = 1, . . . , N  (we refer to it as the rank plot), this curve shows an approximate power law that spans 10 
folds. Interestingly, as the size of the covariance matrices decreases (N  decreases), the eigenspectrum 
curves nearly collapse over a wide range of eigenvalues. This pattern holds across diverse datasets 
and experimental techniques (Figure 2F, Figure 2—figure supplement 2E–L). The similarity of the 
covariance matrices of randomly sampled neural populations can be intuitively visualized (Figure 2E), 
after properly sorting the neurons (Methods).

The scale invariance in the neural covariance matrix – the collapse of the covariance eigenspec-
trum under random sampling – is non-trivial. The spectrum is not scale invariant in a common cova-
riance matrix model based on independent noise (Figure 2G). It is absent when replacing the neural 
covariance matrix eigenvectors with random ones, keeping the eigenvalues identical (Figure  2H). 
A recurrent neural network with random connectivity (Hu and Sompolinsky, 2022) does not yield a 
scale-invariant covariance spectrum (Figure 2I). A recently developed latent variable model (Morrell 
et  al., 2024; Appendix 1—figure 6), which is able to reproduce avalanche criticality, also fails to 
generate the scale-invariant covariance spectrum. Thus, a new model is needed for the covariance 
matrix of neural activity.

Modeling covariance by organizing neurons in functional space
Dimension reduction methods simplify and visualize complex neuron interactions by embedding 
them into a low-dimensional map, within which nearby neurons have similar activities. Inspired by 
these ideas, we use the ERM (Mézard et al., 1999) to model neural covariance. Imagine sprinkling 
neurons uniformly distributed on a d-dimensional functional space of size L (Figure 3A), where the 

near the diagonal. (F) The covariance spectra, that is, eigenvalue versus rank/N, for randomly sampled neurons of different sizes (colors). The gray dots 
represent the sorted variances Cii of all neurons. (G–I) Same as F but from three models of covariance (see details in Methods): (G) a Wishart random 
matrix calculated from a random activity matrix of the same size as the experimental data; (H) replacing the eigenvectors by a random orthogonal set; 
(I) covariance generated from a randomly connected recurrent network. The collapse index (CI), which quantifies the level of scale invariance in the 
eigenspectrum (see Methods), is: (G) CI = 0.214; (H) CI = 0.222; (I) CI = 0.139.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Experimental data description.

Figure supplement 2. The phenomenon of scale-invariant eigenspectra across different datasets.

Figure supplement 3. Negative covariances do not affect the eigenspectrum of the zebrafish data.

Figure supplement 4. Scale-invariant properties persist across different temporal sampling rates in neural recordings.

Figure 2 continued

https://doi.org/10.7554/eLife.100666
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distance between neurons i and j affects their correlation. Let x⃗i represent the functional coordinate 
of the neuron i. The distance-correlation dependency is described by kernel function f(⃗xi − x⃗j) > 0 
with f(0) = 1, indicating closer neurons have stronger correlations, and decreases as distance ∥⃗xi − x⃗j∥ 
increases (Figure 3A and Methods). To model the covariance, we extend the ERM by incorporating 
heterogeneity of neuron activity levels (shown as the size of the neuron in the functional space in 
Figure 3A).

	 Cij = σiσjf(⃗xi − x⃗j), i, j = 1, 2, . . . , N.� (2)

Figure 3. Euclidean Random Matrix (ERM) model of covariance and its eigenspectrum. (A) Schematic of the ERM model, which reorganizes neurons 
(circles) from the anatomical space to the functional space (here d = 2 is a two-dimensional box). The correlation between a pair of neurons decreases 
with their distance in the functional space according to a kernel function f(⃗x). This correlation is then scaled by neurons’ variance σ2

i  (circle size) to 
obtain the covariance Cij. (B) An example ERM correlation matrix (i.e., when σ2

i ≡ 1). (C) Spectrum (same as Figure 2F) for the ERM correlation matrix in 
(B). The gray dots represent the sorted variances Cii of all neurons (same as in Figure 2F). (D) Visualizing the distribution of the same ERM eigenvalues 
in C by plotting the probability density function (pdf).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Covariance spectra under different kernel functions f(⃗x).
Figure supplement 2. Impact of η and d  on the scale invariance of covariance eigenspectra in the Euclidean Random Matrix (ERM) with f(⃗x) = e−∥⃗x∥η.

https://doi.org/10.7554/eLife.100666
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The variance of neural activity σ2
i  is drawn i.i.d. from a given distribution and is independent of 

neurons’ position.
This multidimensional functional space may represent attributes to which neurons are tuned, such as 

sensory features (e.g., visual orientation Hubel and Wiesel, 1959, auditory frequency) and movement 
characteristics (e.g., direction, speed Stefanini et al., 2020; Kropff et al., 2015). In sensory systems, it 
represents stimuli as neural activity patterns, with proximity indicating similarity in features. For motor 
control, it encodes movement parameters and trajectories. In the hippocampus, it represents the 
place field of a place cell, acting as a cognitive map of physical space (O’Keefe, 1976; Moser et al., 
2008; Tingley and Buzsáki, 2018).

We first explore the ERM with various forms of f(⃗x) and find that fast-decaying functions like Gaussian 
and exponential functions do not produce eigenspectra similar to the data and no scale invariance 
over random sampling (Figure 3—figure supplement 1A–H and Appendix 2). Thus, we turn to slow-
decaying functions including the power law, which produce spectra similar to the data (Figure 3C, 
D; see also Figure 3—figure supplement 2). We adopt a particular kernel function because of its 
closed-form and analytical properties: f(⃗x) = ϵµ(ϵ2 + ∥⃗x∥2)−µ/2 (Methods). For large distance ∥⃗x∥ ≫ ϵ, 
it approximates a power law f(⃗x) ≈ ϵµ∥⃗x∥−µ and smoothly transitions at small distance to satisfy the 
correlation requirement f(0) = 1 (Appendix 1—figure 3I, J).

Analytical theory on the conditions of scale invariance in ERM
To determine the conditions for scale invariance in ERM, we analytically calculate the eigenspectrum 
of covariance matrix C (Equation 2) for large N, L using the replica method (Mézard et al., 1999). A 
key order parameter emerging from this calculation is the neuron density ρ := N/Ld. In the high-density 
regime ρϵd ≈ 1, the covariance spectrum can be approximated in a closed form (Methods). For the 
slow-decaying kernel function f(⃗x) defined above, the spectrum for large eigenvalues follows a power 
law (Appendix 2):

	

λ ∼ (r/N)
−1+

µ

d ρ

µ

d ,

and equivalently p(λ) ∼ ρ

µ

d − µ λ
−

2d − µ

d − µ ,�

(3)

where r is the rank of the eigenvalues in descending order and p(λ) is their probability density func-
tion. Equation 3 intuitively explains the scale invariance over random sampling. Sampling in the ERM 
reduces the neuron density ρ. The eigenspectrum is ρ-independent whenever µ/d ≈ 0. This indicates 
two factors contributing to the scale invariance of the eigenspectrum. First, a small exponent µ in the 
kernel function f(⃗x) means that pairwise correlations slowly decay with functional distance and can be 
significantly positive across various functional modules and throughout the brain. For a given µ, an 
increase in dimension d improves the scale invariance. The dimension d could represent the number 
of independent features or latent variables describing neural activity or cognitive states.

We verify our theoretical predictions by comparing sampled eigenspectra in finite-size simulated 
ERMs across different µ and d (Figure  4A). We first consider the case of homogeneous neurons 
(σ2

i ≡ 1 in Equation 2, revisited later) in these simulations (Figures 3C, D and 4A), making C’s entries 
correlation coefficients. To quantitatively assess the level of scale invariance, we introduce a collapse 
index (CI, see Methods for a detailed definition). Motivated by Equation 3, the CI measures the shift 
of the eigenspectrum when the number of sampled neurons changes. The smaller CI values indicate 
higher scale invariance. Intuitively, it is defined as the area between spectrum curves from different 
sample sizes (Figure 4A, upper right). In the log–log scale rank plot, Equation 3 shows the spectrum 
shifts vertically with ρ.

Thus, we define CI as this average displacement (Figure 4A, upper right, Methods), and a smaller 
CI means more scale invariant. Using CI, Figure 4A shows that scale invariance improves with slower 
correlation decay as µ decreases and the functional dimension d increases. Conversely, with large µ 
and small d, the covariance eigenspectrum varies significantly with scale (Figure 4A).

Next, we consider the general case of unequal neural activity levels σ2
i  and check for differences 

between the correlation (equivalent to σ2
i ≡ 1) and covariance matrix spectra. Using the collapsed 

index (CI), we compare the scale invariance of the two spectra in the experimental data. Intrigu-
ingly, the CI of the covariance matrix is consistently smaller (more scale-invariant) across all datasets 

https://doi.org/10.7554/eLife.100666
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(Figure 4C, Figure 4—figure supplement 2C, open vs. closed squares), indicating that the heteroge-
neity of neuronal activity variances significantly affects the eigenspectrum and the geometry of neural 
activity space (Tian et al., 2024). By extending our spectrum calculation to the intermediate density 
regime ρϵd ≪ 1 (Methods), we show that the ERM model can quantitatively explain the improved scale 
invariance in the covariance matrix compared to the correlation matrix (Figure 4—figure supplement 
2B; Table 1).

Lastly, we examine factors that turn out to have minimal impact on the scale invariance of the 
covariance spectrum. First, the shape of the kernel function f(⃗x) over a small distance (small distance 
means f(x) near x = 0 in the functional space, Appendix 1—figure 3) does not affect the distribution of 
large eigenvalues (Appendix 1—figure 3, Table 3, Appendix 1—figure 2, Appendix 1—figure 1A).

This supports our use of a specific f(⃗x) to represent a class of slow-decaying kernels. Second, 
altering the spatial distribution of neurons in the functional space, whether using a Gaussian, uniform, 
or clustered distribution, does not affect large covariance eigenvalues, except possibly the leading 
ones (Appendix 1—figure 1B, Appendix 1). Third, different geometries of the functional space, such 
as a flat square, a sphere, or a hemisphere, result in eigenspectra similar to the original ERM model 

Figure 4. Three factors contributing to scale invariance. (A) Impact of µ and d  (see text) on the scale invariance of Euclidean Random Matrix (ERM) 
spectrum (same plots as Figure 3C) with f(⃗x) = ϵµ(ϵ2 + ∥⃗x∥2)−µ/2. The degree of scale invariance is quantified by the collapse index (CI), which 
essentially measures the area between different spectrum curves (upper right inset). For comparison, we fix the same coordinate range across panels 
hence some plots are cropped. The gray dots represent the sorted variances Cii of all neurons (same as in Figure 2F). (B) Top: sampled correlation 
matrix spectrum in an example animal (fish 1). Bottom: same as top but for the covariance matrix that incorporates heterogeneous variances. The gray 
dots represent the sorted variances Cii of all neurons (same as in Figure 2F). (C) The CI of the correlation matrix (filled squares) is found to be larger 
than that for the covariance matrix (opened squares) across different datasets: f1 to f6: six light-field zebrafish data (10 Hz per volume, this paper); fl: 
light-sheet zebrafish data (2 Hz per volume, Chen et al., 2018); mn: mouse Neuropixels data (downsampled to 10 Hz per volume); mp: mouse two-
photon data (3 Hz per volume, Stringer et al., 2019b).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison between Euclidean Random Matrix (ERM) simulation and theory.

Figure supplement 2. Impact of heterogeneous activity levels on the scale invariance.

https://doi.org/10.7554/eLife.100666
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(Appendix 1—figure 1C). These findings indicate that our theory for the covariance spectrum’s scale 
invariance is robust to various modeling details.

Connection among random sampling, functional sampling, and 
anatomical sampling
So far, we have focused on random sampling of neurons, but how does the neural activity space 
change with different sampling methods? To this end, we consider three methods (Figure  5A1): 
random sampling (RSap), anatomical sampling (ASap) where neurons in a brain region are captured 
by optical imaging (Grewe and Helmchen, 2009; Gauthier and Tank, 2018; Stringer et al., 2019a), 
and functional sampling (FSap) where neurons are selected based on activity similarity (Meshulam 
et al., 2019). In ASap or FSap, sampling involves expanding regions of interest in anatomical space or 
functional space while measuring all neural activity within those regions (Appendix 1). The difference 

Table 1. Table of notations.

Notation Description

C Covariance matrix, Equation 2

Cij Pairwise covariance between neuron i, j; entries of C

DPR Participation ratio dimension, Equation 5

DASap
PR Anatomical sampling dimension, Equation 4

λ Eigenvalue of a covariance matrix C

p(λ) Probability density function of covariance eigenvalues, Equation 8

r Rank of an eigenvalue in descending order, Equation 3

q Fraction of eigenvalues up to λ and q = r/N ; Equation 13

f(⃗x) = f(∥⃗xi − x⃗j∥) Kernel function or distance-correlation function, Equation 11

f̃(⃗k) Fourier transform of f(⃗x), f̃(⃗k) =
´
Rd f(⃗x)e−i⃗x·⃗kddx⃗

μ Power-law exponent in f(⃗x) , Equation 11

ε Resolution parameter in f(⃗x) to smooth the singularity near 0, Equation 11

N Number of neurons

N0 The total number of neurons prior to sampling

k N/N0 the fraction of sampled neurons

L Linear box size of the functional space

ρ Density of neurons in the functional space, Equation 3

d Dimension of the functional space, Equation 3

ai(t) Neural activity of neuron i at time t

σ2
i Temporal variance of neural activity, Equation 2

Cl Collapse index for measuring scale invariance, Equation 13

α Power-law coefficient of eigenspectrum in the rank plot, see Discussion

x⃗i, y⃗i Neuron i's coordinate in the functional and anatomical space, respectively

v⃗func, v⃗anat The first canonical directions in the functional and anatomical space, respectively

RCCA The first canonical correlation

RASap Correlation between anatomical and functional coordinates along ASap direction, Equation 4

https://doi.org/10.7554/eLife.100666
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Figure 5. The relationship between the functional and anatomical space and theoretical predictions. (A) Three sampling methods (A1) and RCCA (see 
text). When RCCA ≈ 0 (A2), the anatomical sampling (ASap) resembles the random sampling (RSap), and while when RCCA ≈ 1 (A4), ASap is similar to 
the functional sampling (FSap). (B) Distribution of neurons in the functional space inferred by MDS. Each neuron is color-coded by its projection along 
the first canonical direction ⃗vanat in the anatomical space (see text). Data based on fish 6, same for (C-E). (C) Similar to (B) but plotting neurons in the 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.100666
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among sampling methods depends on the neuron organization throughout the brain. If anatomically 
localized neurons also cluster functionally (Figure 5A4), ASap ≈ FSap; if they are spread in the func-
tional space (Figure 5A2), ASap ≈ RSap. Generally, the anatomical–functional relationship is in-be-
tween and can be quantified using the Canonical Correlation Analysis (CCA). This technique finds 
axes (CCA vectors ⃗vanat and ⃗vfunc) in anatomical and functional spaces such that the neurons’ projection 
along these axes has the maximum correlation, RCCA. The extreme scenarios described above corre-
spond to RCCA = 1 and RCCA = 0.

To determine the anatomical–functional relationship in neural data, we infer the functional coordi-
nates ⃗xi of each neuron by fitting the ERM using multidimensional scaling (MDS) (Cox and Cox, 2000) 
(Methods). For simplicity and better visualization, we use a low-dimensional functional space where 
d = 2. The fitted functional coordinates confirm the slow decay kernel function in ERM except for a 
small distance (Figure 5—figure supplement 3). The ERM with inferred coordinates x⃗i also repro-
duces the experimental covariance matrix, including cluster structures (Figure 5—figure supplement 
2) and its sampling eigenspectra (Figure 5—figure supplement 1).

Equipped with the functional and anatomical coordinates, we next use CCA to determine which 
scenarios illustrated in Figure 5A align better with the neural data. Figure 5B, C shows a represen-
tative fish with a significant RCCA = 0.327 (p-value = 0.0042, Anderson–Darling test). Notably, the 
CCA vector in the anatomical space, v⃗anat, aligns with the rostrocaudal axis. Coloring each neuron 
in the functional space by its projection along ⃗vanat shows a correspondence between clustering and 
anatomical coordinates (Figure 5B). Similarly, coloring neurons in the anatomical space (Figure 5C) by 
their projection along ⃗vfunc reveals distinct localizations in regions like the forebrain and optic tectum. 
Across animals, functionally clustered neurons show anatomical segregation (Chen et al., 2018), with 
an average RCCA of 0.335 ± 0.054 (mean ± SD).

Next, we investigate the effects of different sampling methods (Figure 5A1) on the geometry of 
the neural activity space when there is a significant but moderate anatomical–functional correlation 
as in the experimental data. Interestingly, dimensionality DASap

PR  in data under anatomical sampling 
consistently falls between random and functional sampling values (Figure  5D). This phenomenon 
can be intuitively explained by the ERM theory. Recall that for large N , the key term in Equation 1 
is Ei̸=j(C2

ij). For a fixed number of sampled neurons, this average squared covariance is maximized 
when neurons are selected closely in the functional space (FSap) and minimized when distributed 
randomly (RSap). Thus, RSap and FSap DPR set the upper and lower bounds of dimensionality, with 
ASap expected to fall in between. This reasoning can be precisely formulated to obtain quantitative 
predictions of the bounds (Methods). We predict the ASap dimension at large N  as

	 DASap
PR ≈ (1 − R2

ASap + k2R2
ASap)µ/dDPR.� (4)

Here, DPR is the dimensionality under RSap (Equation 1), k represents the fraction of sampled 
neurons. RASap is the correlation between anatomical and functional coordinates along the direction 
where the anatomical subregions are divided (Methods), and it is bounded by the canonical correlation 

anatomical space with color based on their projection along ⃗vfunc in the functional space (see text). (D) Dimensionality (DPR) across sampling methods: 
average DPR under RSap (circles), average and individual brain region DPR under ASap (squares and dots), and DPR under FSap for the most correlated 
neuron cluster (triangles; Methods). Dashed and solid lines are theoretical predictions for DPR under RSap and FSap, respectively (Methods). (E) The CI 
of correlation matrices under three sampling methods in six animals (colors). **p < 0.01; ***p < 0.001; one-sided paired t tests: RSap versus ASap, p = 
0.0010; RSap versus FSap, p = 0.0004; ASap versus FSap, p = 0.0014.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Fitting Euclidean Random Matrix (ERM) to zebrafish data from our experiments (part 1).

Figure supplement 2. Fitting Euclidean Random Matrix (ERM) to all six zebrafish data from our experiments (part 2).

Figure supplement 3. Fitting Euclidean Random Matrix (ERM) to all six zebrafish data from our experiments (part 3).

Figure supplement 4. Fitting Euclidean Random Matrix (ERM) to all six zebrafish data from our experiments (part 4).

Figure supplement 5. Relationship between the functional space and anatomical space for each zebrafish dataset from our experiments.

Figure supplement 6. Dimensionality (DPR) across sampling methods in fish data.

Figure supplement 7. Dimensionality (DPR) across sampling methods in Euclidean Random Matrix (ERM).

Figure 5 continued

https://doi.org/10.7554/eLife.100666
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RASap ≤ RCCA. When RASap = 0, we get the upper bound DASap
PR = DPR (Figure 5D, dashed line). The 

lower bound is reached when RASap = RCCA = 1 (Figure 5A4), where Equation 4 shows a scaling rela-

tionship DASap
PR = DFSap

PR ∼ k2µ/dDPR that depends on the sampling fraction k (Figure 5D, solid line). This 

contrasts with the k-independent dimensionality of RSap in Equation 1. Furthermore, if RASap and its 

upper bound is not close to 1 (precisely RASap ≤ 0.84 for the ERM model in Figure 5D), DASap
PR  align 

closer to the upper bound of RSap. This prediction agrees well with our observations in data across 
animals (Figure 5D, Figure 5—figure supplement 6, and Figure 5—figure supplement 7).

Beyond dimensionality, our theory predicts the difference in the covariance spectrum between 
sampling methods based on the neuronal density ρ in the functional space (Equation 3). This density 
ρ remains constant during FSap (Figure 5A1) and decreases under RSap; the average density across 
anatomical regions ⟨ρ⟩ in ASap lies between those of FSap and RSap. Analogous to Equation 4, the 
relationship in ρ orders the spectra: ASap’s spectrum lies between those of FSap and RSap (Methods). 
This further implies that the level of scale invariance under ASap should fall between that of RSap and 
FSap, which is confirmed by our experimental data (Figure 5E).

Discussion
Impact of hunting behavior on scale invariance and functional space 
organization
How does task-related neural activity shape the covariance spectrum and brain-wide functional orga-
nization? We examine the hunting behavior in larval zebrafish, marked by eye convergence (both eyes 
move inward to focus on the central visual field) (Bianco et al., 2011). We find that scale invariance 
of the eigenspectra persists and is enhanced even after removing the hunting frames from the Ca2+ 
imaging data (Figure 4C, Appendix 1—figure 7A, B, Appendix 1). This is consistent with the scale-
invariant spectrum found in other datasets during spontaneous behaviors (Figure 5—figure supple-
ment 1F, Figure 2—figure supplement 2G, H), suggesting scale invariance is a general phenomenon.

Interestingly, in the inferred functional space, we observe reorganizations of neurons after 
removing hunting behavior (Appendix 1—figure 7C, D). Neurons in one cluster disperse from their 
center of mass (Appendix 1—figure 7D) and decreases the local neuronal density ρ (Appendix 1 and 
Appendix 1—figure 7E). The neurons in this dispersed cluster have a consistent anatomical distribu-
tion from the midbrain to the hindbrain in four out of five fish (Appendix 1—figure 9). During hunting, 
the cluster has robust activations that are widespread in the anatomical space but localized in the 
functional space (Appendix 1, Appendix 1—Video 1).

Our findings suggest that the functional space could be defined by latent variables that represent 
cognitive factors such as decision-making, memory, and attention. These variables set the space’s 
dimensions, with neural activity patterns reflecting cognitive state dynamics. Functionally related 
neurons – through sensory tuning, movement parameters, internal conditions, or cognitive factors – 
become closer in this space, leading to stronger activity correlations.

Criticality and power law
What drives brain dynamics with a slow-decaying distance–correlation function f(⃗x) in functional 
space? Long-range connections and a slow decline in projection strength over distance (Kunst et al., 
2019) may cause extensive correlations, enhancing global activity patterns. This behavior is also remi-
niscent of phase transitions in statistical mechanics (Kardar, 2007), where local interactions lead to 
expansive correlated behaviors. Studies suggest that critical brains optimize information processing 
(Beggs and Plenz, 2003; Dahmen et al., 2019). The link between neural correlation structures and 
neuronal connectivity topology is an exciting area for future exploration.

In the high-density regime of the ERM model, the rank plot (Equation 3) for large eigenvalues 
(λ > 1) follows a power law λ ∼ r−α, with α = 1 − µ/d < 1. The scale-invariant spectrum occurs when 
α is close to 1. Experimental data, however, align more closely with the model in the intermediate-
density regime, where the power-law spectrum is an approximation and the decay is slower (for ERM 
model, Figure  4—figure supplement 1BC, and for data α = 0.47 ± 0.08, mean ± SD, n =6 fish). 
Stringer et al., 2019a found an α ≳ 1 decay in the mouse visual cortex’s stimulus trial averaged cova-
riance spectrum, and they argued that this decay optimizes visual code efficiency and smoothness. 

https://doi.org/10.7554/eLife.100666
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Our study differs in two fundamental ways. First, we recorded brain-wide activity during spontaneous 
or hunting behavior, calculating neural covariance from single-trial activity. Much of the neural activity 
was not driven by sensory stimulus and unrelated to specific tasks, requiring a different interpreta-
tion of the neural covariance spectrum. Second, without loss of generality, we normalized the mean 
variance of neural activity E(σ2) by scaling the covariance matrix so that its eigenvalues sum up to N . 
This normalization imposes a constraint on the spectrum. In particular, large and small eigenvalues 
may have different behaviors and do not need to obey a single power law λ ∼ r−α for all N  eigen-
values (Pospisil and Pillow, 2024) (Methods). Stringer et al., 2019a did not take this possibility into 
account, making their theory less applicable to our analysis.

We draw inspiration from the renormalization group (RG) approach to navigate neural covariance 
across scales, which has also been explored in the recent literature. Following Kadanoff’s block spin 
transformation (Kardar, 2007, Meshulam et al., 2019) formed size-dependent neuron clusters and 
their covariance matrices by iteratively pairing the most correlated neurons and placing them adja-
cent on a lattice. The groups expanded until the largest reached the system size. The RG process, 
akin to spatial sampling in functional space (FSap), maintains constant neuron density ρ. Thus, for any 
kernel function f(⃗x), including the power law and exponential, the covariance eigenspectrum remains 
invariant across scales (Appendix 1—figure 5A, B, D, E).

Morrell et al., 2024; Morrell et al., 2021 proposed a simple model in which a few time-varying 
latent factors impact the whole neural population. We evaluated if this model could account for the 
scale invariance seen in our data. Simulations showed that the resulting eigenspectra differed consid-
erably from our findings (Appendix 1—figure 6). Although the Morrell model demonstrated a degree 
of scale invariance under functional sampling (or RG), it did not align with the scale-invariant features 
under random sampling, suggesting that this simple model might not capture all crucial features in 
our observations.

We emphasize that the covariance spectrum being a power law is distinct from the scale invari-
ance we define in this study, namely the collapse of spectrum curves under random neuron sampling. 
The random RNN model in Figure 2I shows a power-law behavior, but lacks true scale invariance as 
spectrum curves for different sizes do not collapse. When connection strength g approaches 1, the 

system exhibits a power-law spectrum of λ ∝
( r

N
)− 3

2. Subsampling causes the spectrum to shift by 
λ ∝ k−

1
2
( r

N
)− 3

2, where k = Ns/N  is the sampling fraction (derived from Equation 24 in Hu and Sompo-
linsky, 2022).

Bounded dimensionality under random sampling
The saturation of the dimensionality DPR at large sample sizes indicates a limit to neural assembly 
complexity, evidenced by the finite mean square covariance. This is in contrast with neural dynamics 
models such as the balanced excitatory–inhibitory (E–I) neural network (Renart et al., 2010), where 
Ei̸=j(C2

ij) ∼ 1/N  resulting in an unbounded dimensionality (see Appendix 2). Our results suggest that 
the brain encodes experiences, sensations, and thoughts using a finite set of dimensions instead of an 
infinitely complex neural activity space.

We found that the relationship between dimensionality and the number of recorded neurons 
depends on the sampling method. For functional sampling, the dimensionality scales with the sampling 
fraction k : D FSap

PR ∼ k2µ/dDPR. This suggests that if anatomically sampled neurons are functionally clus-
tered, as with cortical neurons forming functional maps, the increase in dimensionality with neuron 
number may seem unbounded. This offers new insights for interpreting large-scale neural activity data 
recorded under various techniques.

Manley et al., 2024 found that, unlike in our study, neural activity dimensionality in head-fixed, 
spontaneously behaving mice did not saturate. They used shared variance component analysis (SVCA) 
and noted that PCA-based estimates often show dimensionality saturation, which is consistent with 
our findings. We intentionally chose PCA in our study for several reasons. First, PCA is a trusted 
and widely used method in neuroscience, proven to uncover meaningful patterns in neural data. 
Second, its mathematical properties are well understood, making it particularly suitable for our theo-
retical analysis. Although newer methods such as SVCA might offer valuable insights, we believe PCA 
remains the most appropriate method for our research questions.

It is important to note that the scale invariance of dimensionality and covariance spectrum are 
distinct phenomena with different underlying requirements. Dimensionality invariance relies on finite 

https://doi.org/10.7554/eLife.100666
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mean square covariance, causing saturation at large sample sizes. In contrast, spectral invariance 
requires a slow-decaying correlation kernel (small µ) and/or a high-dimensional functional space (large 
d). Although both features appear in our data, they result from distinct mechanisms. A neural system 
could show saturating dimensionality without spectral invariance if it has finite mean square covari-
ance but rapidly decaying correlations with functional distance. Understanding these requirements 
clarifies how neural organization affects different scale-invariant properties.

Computational benefits of a scale-invariant covariance spectrum
Our findings are validated across multiple datasets obtained through various recording techniques 
and animal models, ranging from single-neuron calcium imaging in larval zebrafish to single-neuron 
multi-electrode recordings in the mouse brain (see Figure 2—figure supplement 2). The conclusion 
remains robust when the multi-electrode recording data are reanalyzed under different sampling rates 
(6–24 Hz, Figure 2—figure supplement 4). We also confirm that substituting a few negative covari-
ances with zero retains the spectrum of the data covariance matrix (Figure 2—figure supplement 3 
and Methods).

The scale invariance of neural activity across different neuron assembly sizes could support effi-
cient multiscale information encoding and processing. This indicates that the neural code is robust 
and requires minimal adjustments despite changes in population size. One recent study shows that 
randomly sampled and coarse-grained macrovoxels can predict population neural activity (Hoffmann 
et  al., 2023), reinforcing that a random neuron subset may capture overall activity patterns. This 
enables downstream circuits to readout and process information through random projections (Gao 
et al., 2017). A recent study demonstrates that a scale-invariant noise covariance spectrum with a 
specific slope α < 1 enables neurons to convey unlimited stimulus information as the population size 
increases (Moosavi et al., 2024). The linear Fisher information, in this context, grows at least as N1−α.

Understanding how dimensionality and spectrum change with sample size also suggests the possi-
bility of extrapolating from small samples to overcome experimental limitations. This is particularly 
feasible when µ/d → 0, where the dimensionality and spectrum under anatomical, random, and func-
tional sampling coincide (Equations 3 and 4). Developing extrapolation methods and exploring the 
benefits of scale-invariant neural code are promising future research directions.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Danio rerio)

Tg(elavl3: H2B- 
GCaMP6f)

https://doi.org/10.7554/​
eLife.12741

Jiu-Lin Du, Institute of Neuroscience, Chinese 
Academy of Sciences, Shanghai

Software, algorithm julia1.7 https://julialang.org/

Software, algorithm MATLAB https://ww2.mathworks.cn/

Software, algorithm Mathematica
https://www.wolfram.com/​
mathematica/

Experimental methods
The handling and care of the zebrafish complied with the guidelines and regulations of the Animal 
Resources Center of the University of Science and Technology of China (USTC). All larval zebrafish 
(huc:h2b -GCaMP6f Cong et al., 2017) were raised in E2 embryo medium (comprising 7.5 mM NaCl, 
0.25 mM KCl, 0.5 mM MgSO4, 0.075 mM KH2PO4, 0.025 mM Na2HPO4, 0.5 mM CaCl2, and 0.35 mM 
NaHCO3; containing 0.5 mg/l methylene blue) at 28.5°C and with a 14-hr light and 10-hr dark cycle.

To induce hunting behavior (composed of motor sequences like eye convergence and J turn) in 
larval zebrafish, we fed them a large amount of paramecia over a period of 4–5 days post-fertilization 
(dpf). The animals were then subjected to a 24-hr starvation period, after which they were trans-
ferred to a specialized experimental chamber. The experimental chamber was 20 mm in diameter and 
1 mm in depth, and the head of each zebrafish was immobilized by applying 2% low melting point 
agarose. The careful removal of the agarose from the eyes and tail of the fish ensured that these body 
regions remained free to move during hunting behavior. Thus, characteristic behavioral features such 

https://doi.org/10.7554/eLife.100666
https://doi.org/10.7554/eLife.12741
https://doi.org/10.7554/eLife.12741
https://julialang.org/
https://ww2.mathworks.cn/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
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as J-turns and eye convergence could be observed and analyzed. Subsequently, the zebrafish were 
transferred to an incubator and stayed overnight. At 7 dpf, several paramecia were introduced in front 
of the previously immobilized animals, each of which was monitored by a stereomicroscope. Those 
displaying binocular convergence were selected for subsequent Ca2+ imaging experiments.

We developed a novel optomagnetic system that allows (1) precise control of the trajectory of 
the paramecium and (2) imaging brain-wide Ca2+ activity during the hunting behavior of zebrafish. 
To control the movement of the paramecium, we treated these microorganisms with a suspension of 
ferric tetroxide for 30 min and selected those that responded to its magnetic attraction. A magnetic 
paramecium was then placed in front of a selected larva, and its movement was controlled by changing 
the magnetic field generated by Helmholtz coils that were integrated into the imaging system. The 
real-time position of the paramecium, captured by an infrared camera, was identified by online image 
processing. The positional vector relative to a predetermined target position was calculated. The 
magnitude and direction of the current in the Helmholtz coils were adjusted accordingly, allowing for 
precise control of the magnetic field and hence the movement of the paramecium. Multiple target 
positions could be set to drive the paramecium back and forth between multiple locations.

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types 
of behavior: induced hunting behavior by a moving paramecium in front of a fish (fish 1–5), and 
spontaneous behavior without any visual stimulus as a control (fish 6). Experiments were carried out 
at ambient temperature (ranging from 23 to 25°C). The behavior of the zebrafish was monitored 
by a high-speed infrared camera (Basler acA2000-165umNIR, 0.66×) behind a 4F optical system 
and recorded at 50 Hz. Brain-wide Ca2+ imaging was achieved using XLFM. Light-field images were 
acquired at 10 Hz, using customized LabVIEW software (National Instruments, USA) or Solis software 
(Oxford Instruments, UK), with the help of a high-speed data acquisition card (PCIe-6321, National 
Instruments, USA) to synchronize the fluorescence with behavioral imaging.

Behavior analysis
The background of each behavior video was removed using the clone stamp tool in Adobe Photoshop 
CS6. Individual images were then processed by an adaptive thresholding algorithm, and fish head and 
yolk were selected manually to determine the head orientation. The entire body centerline, extending 
from head to tail, was divided into 20 segments. The amplitude of a bending segment was defined 
as the angle between the segment and the head orientation. To identify the paramecium in a noisy 
environment, we subtracted a background image, averaged over a time window of 100 s, from all the 
frames. The major axis of the left or right eye was identified using DeepLabCut (Mathis et al., 2018). 
The eye orientation was defined as the angle between the rostrocaudal axis and the major axis of an 
eye. The convergence angle was defined as the angle between the major axes of the left and right 
eyes. An eye-convergence event was defined as a period of time where the angle between the long 
axis of the eyes stayed above 50° (Bianco et al., 2011).

Imaging data acquisition and processing
We used a fast eXtended light-field microscope (XLFM, with a volume rate of 10 Hz) to record Ca2+ 
activity throughout the brain of head-fixed larval zebrafish. Fish were ordered by the dates of experi-
ments. As previously described (Cong et al., 2017), we adopted the Richardson–Lucy deconvolution 
method to iteratively reconstruct 3D fluorescence stacks (600 × 600 × 250) from the acquired 2D 
images (2048 × 2048). This algorithm requires an experimentally measured point spread function of 
the XLFM system. The entire recording for each fish is 15.3 ± 4.3 min (mean ± SD).

To perform image registration and segmentation, we first cropped and resized the original image 
stack to 400 × 308 × 210, which corresponded to the size of a standard zebrafish brain (zbb) atlas 
(Tabor et al., 2019). This step aimed to reduce substantial memory requirements and computational 
costs in subsequent operations. Next, we picked a typical volume frame and aligned it with the zbb 
atlas using a basic 3D affine transformation. This transformed frame was used as a template. We 
aligned each volume with the template using rigid 3D intensity-based registration (Studholme et al., 
1997) and non-rigid pairwise registration (Rueckert et al., 1999) in the Computational Morphom-
etry Toolkit (CMTK) (https://www.nitrc.org/projects/cmtk/). After voxel registration, we computed the 
pairwise correlation between nearby voxel intensities and performed the watershed algorithm on the 
correlation map to cluster and segment voxels into consistent ROIs across all volumes. We defined 

https://doi.org/10.7554/eLife.100666
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the diameter of each ROI using the maximum Feret diameter (the longest distance between any two 
voxels within a single ROI).

Finally, we adopted the ‘OASIS’ deconvolution method to denoise and infer neural activity from 
the fluorescence time sequence (Friedrich et al., 2017). The deconvolved ∆F/F of each ROI was used 
to infer firing rates for subsequent analysis.

Other experimental datasets analyzed
To validate our findings across different recording methods and animal models, we also analyzed 
three additional datasets (Table 2). We include a brief description below for completeness. Further 
details can be found in the respective reference. The first dataset includes whole-brain light-sheet 
Ca2+ imaging of immobilized larval zebrafish in the presence of visual stimuli as well as in a sponta-
neous state (Chen et al., 2018). Each volume of the brain was scanned through 2.11 ± 0.21 planes per 
second, providing a near-simultaneous readout of neuronal Ca2+ signals. We analyzed fish 8 (69,207 
neurons × 7890 frames), 9 (79,704 neurons × 7720 frames), and 11 (101,729 neurons × 8528 frames), 
which are the first three fish data with more than 7200 frames. For simplicity, we labeled them l2, l3, 
and l1(fl). The second dataset consists of Neuropixels recordings from approximately ten different 
brain areas in mice during spontaneous behavior (Stringer et al., 2019b). Data from the three mice, 
Kerbs, Robbins, and Waksman, include the firing rate matrices of 1462 neurons × 39,053 frames, 2296 
neurons × 66,409 frames, and 2688 neurons × 74,368 frames, respectively. The last dataset comprises 
two-photon Ca2+ imaging data (2–3 Hz) obtained from the visual cortex of mice during spontaneous 
behavior. While this dataset includes numerous animals, we focused on the first three animals that 
exhibited spontaneous behavior. While this dataset includes numerous animals, we focused on the 
first three animals that exhibited spontaneous behavior:spont_M150824_MP019_2016-04-05 (11,983 
neurons × 21,055 frames), spont_M160825_MP027_2016-12-12 (11,624 neurons × 23,259 frames), 
and spont_M160907_MP028_2016-09-26 (9392 neurons × 10,301 frames) (Stringer et al., 2019b).

Covariance matrix, eigenspectrum, and sampling procedures
To begin, we multiplied the inferred firing rate of each neuron (see Methods) by a constant such that in 
the resulting activity trace ai, the mean of ai(t) over the nonzero time frames equaled one (Meshulam 
et al., 2019). Consistent with the literature (Meshulam et al., 2019), this step aimed to eliminate 
possible confounding factors in the raw activity traces, such as the heterogeneous expression level of 
the fluorescence protein within neurons and the nonlinear conversion of the electrical signal to Ca2+ 
concentration. Note that after this scaling, neurons could still have different activity levels charac-
terized by the variance of ai(t) over time, due to differences in the sparsity of activity (proportion of 
nonzero frames) and the distribution of nonzero ai(t) values. Without normalization, the covariance 
matrix becomes nearly diagonal, causing significant underestimation of the covariance structures.

The three models of covariance in Figure 2G–I were constructed as follows. For model in Figure 2G, 
the entries of matrix G (with dimensions N × T ) were sampled from an i.i.d. Gaussian distribution with 
zero mean and standard deviation σ = 1. In Figure 2H, we constructed the composite covariance 
matrix for fish 1 achieved by maintaining the eigenvalues from the fish 1 data covariance matrix and 
replacing the eigenvectors U  with a set of random orthonormal basis. Lastly, the covariance matrix in 
Figure 2I was generated from a randomly connected recurrent network of linear rate neurons. The 
entries in the synaptic weight matrix are normally distributed with Jij ∼ N (0, g2/N), with a coupling 
strength  g = 0.95 (Hu and Sompolinsky, 2022; Morales et al., 2023). For consistency, we used the 
same number of time frames T = 7200 when comparing CI across all the datasets (Figures 4B, C and 

Table 2. Resources for additional experimental datasets.

Dataset Data reference

Light-sheet imaging of larval zebrafish (Chen 
et al., 2018) https://janelia.figshare.com/articles/dataset/Whole-brain_light-sheet_imaging_data/7272617

Neuropixels recordings in mice (Stringer 
et al., 2019b)

https://janelia.figshare.com/articles/dataset/Eight-probe_Neuropixels_recordings_during_
spontaneous_behaviors/7739750

Two-photon imaging in mice (Stringer et al., 
2019b)

https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_
during_spontaneous_behaviors/6163622

https://doi.org/10.7554/eLife.100666
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https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622
https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622
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5D, E, Figure 4—figure supplement 2C). For other cases, we analyzed the full length of the data 
(number of time frames: fish 1 – 7495, fish 2 – 9774, fish 3 – 13,904, fish 4 – 7318, fish 5 – 7200, and 
fish 6 – 9388). Next, the covariance matrix was calculated as Cij = 1

T−1
∑T

t=1
(
ai(t) − āi

) (
aj(t) − āj

)
, 

where āi is the mean of ai(t) over time. Finally, to visualize covariance matrices on a common scale, 
we multiplied matrix C by a constant such that the average of its diagonal entries equaled one, that 
is, Tr(C)/N = 1. This scaling did not alter the shape of covariance eigenvalue distribution, but set the 
mean at 1 (see also Equation 8).

To maintain consistency across datasets, we fixed the same initial number of neurons at N0 = 1, 024. 
These N0 neurons were randomly chosen once for each zebrafish dataset and then used throughout 
the subsequent analyses. We adopted this setting for all analyses except in two particular instances: 
(1) for comparisons among the three sampling methods (RSap, ASap, and FSap), we specifically chose 
1024 neurons centered along the anterior–posterior axis, mainly from the midbrain to the anterior 
hindbrain regions (Figure 5DE, Figure 5—figure supplement 6). (2) When investigating the impact 
of hunting behavior on scale invariance, we included the entire neuronal population (Appendix 1).

We used an iterative procedure to sample the covariance matrix C (calculated from data or as simu-
lated ERMs). For RSap, in the first iteration, we randomly selected half of the neurons. The covariance 
matrix for these selected neurons was a N/2 × N/2 diagonal block of C. Similarly, the covariance matrix 
of the unselected neurons was another diagonal block of the same size. In the next iteration, we 
similarly created two new sampled blocks with half the number of neurons for each of the blocks we 
had. Repeating this process for n iterations resulted in 2n blocks, each containing N := N0/2n neurons. 
At each iteration, the eigenvalues of each block were calculated and averaged across the blocks after 
being sorted in descending order. Finally, the averaged eigenvalues were plotted against rank/N  on 
a log–log scale.

In the case of ASap and FSap, the process of selecting neurons was different, although the 
remaining procedures followed the RSap protocol. In ASap, the selection of neurons was based on 
a spatial criterion: neurons close to the anterior end on the anterior–posterior axis were grouped to 
create a diagonal block of size N

2 × N
2 , with the remaining neurons forming a separate block. FSap, 

on the other hand, used the RG framework (Meshulam et al., 2019) to define the blocks (details in 
Appendix 1). In each iteration, the cluster of neurons within a block that showed the highest average 
correlation (Ei̸=j(C2

ij)) was identified and labeled as the most correlated cluster (refer to Figure 5D, 
Figure 5—figure supplement 6, and Figure 5—figure supplement 7).

In the ERM model, as part of implementing ASap, we generated anatomical and functional coordi-
nates for neurons with a specified CCA properties as described in Methods. Mirroring the approach 
taken with our data, ASap segmented neurons into groups based on the first dimension of their 
anatomical coordinates, akin to the anterier–posterior axis. FSap employed the same RG procedures 
outlined earlier (Appendix 1).

To determine the overall power-law coefficient of the eigenspectra, α, throughout sampling, we 
fitted a straight line in the log–log rank plot to the large eigenvalues that combined the original and 
three iterations of sampled covariance matrices (selecting the top 10% eigenvalues for each matrix 
and excluding the first four largest ones for each matrix). We averaged the estimated α over 10 
repetitions of the entire sampling procedure. R2 of the power-law fit was computed in a similar way. 
To visualize the statistical structures of the original and sampled covariance matrices, the orders of 
the neurons (i.e., columns and rows) are determined by the following algorithm. We first construct a 
symmetric Toeplitz matrix T , with entries Ti,j = ti−j and ti−j ≡ tj−i. The vector t⃗ = [t0, t1, . . . , tN−1] is 
equal to the mean covariance vector of each neuron calculated below. Let c⃗i be a row vector of the 
data covariance matrix; we identify ⃗ t = 1

N
∑N

i=1 D(c⃗i), where D(·) denotes a numerical ordering oper-
ator, namely rearranging the elements in a vector ⃗c  such that c0 ≥ c1 ≥ . . . ≥ cN−1. The second step is 
to find a permutation matrix P such that ∥T − PCPT∥F is minimized, where ∥ ∥F denotes the Frobenius 
norm. This quadratic assignment problem is solved by simulated annealing. Note that after sampling, 
the smaller matrix will appear different from the larger one. We need to perform the above reordering 
algorithm for every sampled matrix so that matrices of different sizes become similar in Figure 2E.

The composite covariance matrix with substituted eigenvectors in Figure  2H was created as 
described in the following steps. First, we generated a random orthogonal matrix Ur (based on 
the Haar measure) for the new eigenvectors. This was achieved by QR decomposition A = UrR of 
a random matrix A with i.i.d. entries Aij ∼ N (0, 1/N). The composite covariance matrix Cr was then 
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defined as Cr := UrΛUT
r , where Λ is a diagonal matrix that contains the eigenvalues of C. Note that 

since all the eigenvalues are real and Ur is orthogonal, the resulting Cr is a real and symmetric matrix. 
By construction, Cr and C have the same eigenvalues, but their sampled eigenspectra can differ.

Dimensionality
In this section, we introduce the participation ratio (DPR) as a metric for effective dimensionality of a 
system, based on Recanatesi et al., 2019; Litwin-Kumar et al., 2017; Gao and Ganguli, 2015; Gao 
et al., 2017; Clark et al., 2023; Dahmen et al., 2020. DPR is defined as:

	
DPR(C) =

(∑
i λi

)2

∑
i λ

2
i

=
(
Tr(C)

)2

Tr(C2)
= N2E(σ2)2

NE(σ4) + N(N − 1)Ei ̸=j(C2
ij)�

(5)

Here, λi are the eigenvalues of the covariance matrix C, representing variances of neural activities. 
Tr(·) denotes the trace of the matrix. The term Ei̸=j(C2

ij) denotes the expected value of the squared 
elements that lie off the main diagonal of C. This represents the average squared covariance between 
the activities of distinct pairs of neurons.

With these definitions, we explore the asymptotic behavior of DPR as the number of neurons N  
approaches infinity:

	
lim

N→∞
DPR(C) = E(σ2)2

Ei ̸=j(C2
ij)�

This limit highlights the relationship between the PR dimension and the average squared cova-
riance among different pairs of neurons. To predict how DPR scales with the number of neurons 
(Figure 2D), we first estimated these statistical quantities (Ei̸=j(C2

ij), E(σ2), and E(σ4)) using all avail-
able neurons, then applied Equation 5 for different values of N . It is worth mentioning that a similar 
theoretical finding is established by Dahmen et al., 2020. The transition from increasing DPR with N  
to approaching the saturation point occurs when N  is significantly larger than DPR.

ERM model
We consider the eigenvalue distribution or spectrum of the matrix C at the limit of N ≫ 1 and L ≫ 1. 
This spectrum can be analytically calculated in both high- and intermediate-density scenarios using the 
replica method (Mézard et al., 1999). The following sketch shows our approach, and detailed deriva-
tions can be found in Appendix 2. To calculate the probability density function of the eigenvalues (or 

eigendensity), we first compute the resolvent or Stieltjes transform g(z) = − 2
N∂z

⟨
ln det(zI − C)−1/2

⟩
, 

z ∈ C. Here, ⟨. . . ⟩ is the average across the realizations of C (i.e., random x⃗i’ s and σ2
i ’ s). The relation-

ship between the resolvent and the eigendensity is given by the Sokhotski–Plemelj formula:

	
p(λ) = − 1

π
lim

η→0+
Im g(λ + iη),

�
(6)

where Im means imaginary part.
Here we follow the field-theoretic approach (Mézard et al., 1999), which turns the problem of 

calculating the resolvent to a calculation of the partition function in statistical physics by using the 
replica method. In the limit N → ∞, Ld → ∞, ρ being finite, by performing a leading order expansion 
of the canonical partition function at large z (Appendix 2), we find the resolvent is given by

	
g(z) = 1

ρ

ˆ
ddk⃗

(2π)d
1

z − ρE(σ2)̃f(⃗k)�
(7)

In the high-density regime, the probability density function (pdf) of the covariance eigenvalues can 
be approximated and expressed from Equations 6 and 7 using the Fourier transform of the kernel 
function f̃(⃗k):

	
p(λ) = 1

ρE(σ2)

ˆ

Rd

ddk⃗
(2π)d δ

(
λ

E(σ2)
− ρ̃f(⃗k)

)
,
�

(8)
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where δ(x) is the Dirac delta function and E(σ2) is the expected value of the variances of neural activity. 
Intuitively, Equation 8 means that λ/ρ are distributed with a density proportional to the area of f̃(⃗k)’ 
level sets (i.e., isosurfaces).

In Results, we found that the covariance matrix consistently shows greater scale invariance 
compared to the correlation matrix across all datasets. This suggests that the variability in neuronal 
activity significantly influences the eigenspectrum. This finding, however, cannot be explained by the 
high-density theory, which predicts that the eigenspectrum of the covariance matrix is simply a resca-
ling of the correlation eigenspectrum by E(σ2

i ), the expected value of the variances of neural activity. 
Without loss of generality, we can always standardize the fluctuation level of neural activity by setting 
E(σ2) = 1. This is equivalent to multiplying the covariance matrix C by a constant such that Tr(C)/N = 1, 
which in turn scales all the eigenvalues of C by the same factor. Consequently, the heterogeneity 
of σ2

i  has no effect on the scale invariance of the eigenspectrum (see Equation 8). This theoretical 
prediction is indeed correct and is confirmed by direct numerical simulations and quantifying the scale 
invariance using the CI (Figure 4—figure supplement 2A).

Fortunately, the inconsistency between theory and experimental results can be resolved by focusing 
the ERM within the intermediate density regime ρϵd ≪ 1, where neurons are positioned at a moderate 
distance from each other. As mentioned above, we set E(σ2) = 1 in our model and vary the diversity of 
activity fluctuations among neurons represented by E(σ4). Consistent with the experimental observa-
tions, we find that the CI decreases with E(σ4) (see Figure 4—figure supplement 2B). This agreement 
indicates that the neural data are better explained by the ERM in the intermediate density regime.

To gain a deeper understanding of this behavior, we use the Gaussian variational method (Mézard 
et al., 1999) to calculate the eigenspectrum. Unlike the high-density theory where the eigendensity 
has an explicit expression, in the intermediate density the resolvent g(z) no longer has an explicit 
expression and is given by the following equation:

	
g(z) =

⟨
1

z − σ2
´

D⃗k G̃(⃗k, z)

⟩

σ

,
�

(9)

where ⟨. . . ⟩σ computes the expectation value of the term within the bracket with respect to σ, namely 

⟨. . . ⟩σ ≡
´
. . . p(σ)dσ. Here and in the following, we denote 

´
D⃗k ≡

´ dd⃗k
(2π)d . The function G(⃗k, z) is 

determined by a self-consistent equation,

	

1
f̃(⃗k)

= 1
G̃(⃗k, z)

+

⟨
ρσ2

z − σ2
´

D⃗k G̃(⃗k, z)

⟩

σ�
(10)

We can solve 
´

D⃗k G(⃗k, z) from Equation 10 numerically and below is an outline, and the details are 
explained in Appendix 2. Let us define the integral G ≡

´
D⃗k G̃(⃗k, z). First, we substitute z ≡ λ + iη into 

Equation 10 and write G = ReG + iImG. Equation 10 can thus be decomposed into its real part and 
imaginary part, and a set of nonlinear and integral equations, each of which involves both ReG and 
ImG. We solve these equations at the limit η → 0 using a fixed-point iteration that alternates between 
updating ReG and ImG until convergence.

We find that the variational approximations exhibit excellent agreement with the numerical simu-
lation for both large and intermediate ρ where the high-density theory starts to deviate significantly 
(for ρ = 256 and ρ = 10.24, ϵ = 0.03125, Figure 4—figure supplement 1). Note that the departure of 
the leading eigenvalues in these plots is expected, since the power-law kernel function we use is not 
integrable (see Methods).

To elucidate the connection between the two different methods, we estimate the condition when 
the result of the high-density theory (Equation 8) matches that of the variational method (Equations 9 
and 10; Appendix 2). The transition between these two density regimes can also be understood (see 
Equation 22 and Appendix 2).

Importantly, the scale invariance of the spectrum at µ/d → 0 previously derived using the high-
density result (Equation 3) can be extended to the intermediate-density regime by proving the ρ-in-
dependence using the variational method (Appendix 2).

Finally, using the variational method and the integration limit estimated by simulation (see Methods), 
we show that the heterogeneity of the variance of neural activity, quantified by E(σ4), indeed improves 
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the collapse of the eigenspectra for intermediate ρ (Appendix 2). Our theoretical results agree excel-
lently with the ERM simulation (Figure 4—figure supplement 2A, B).

Kernel function
Throughout the paper, we have mainly considered a particular approximate power-law kernel function 
inspired by the Student’s t distribution

	 f(⃗x) = ϵµ(ϵ2 + ∥⃗x∥2)−µ/2.� (11)

To understand how to choose ϵ and µ, see Methods. Variations of Equation 11 near x = 0 have also 
been explored; see a summary in Table 3.

It is worth mentioning that a power law is not the only slow-decaying function that can produce a 
scale-invariant covariance spectrum (Figure 3—figure supplement 2). We choose it for its analytical 
tractability in calculating the eigenspectrum. Importantly, we find numerically that the two contrib-
uting factors to scale invariance – namely, slow spatial decay and higher functional space – can be 
generalized to other nonpower-law functions. An example is the stretched exponential function 
f(⃗x) = e−∥⃗x∥η with 0 < η < 1. When η is small and d is large, the covariance eigenspectra also display a 
similar collapse upon random sampling (Figure 3—figure supplement 2).

This approximate power-law f(⃗x) has the advantage of having an analytical expression for its Fourier 
transform, which is crucial for the high-density theory (Equation 8),

	
f(⃗k) =

2
d − µ + 2

2 π

d
2 k

µ− d
2 ϵ

µ + d
2 K(d−µ)/2(kϵ)

Γ(µ/2)
, k = ∥⃗k∥

�

(12)

Here, Kα(x) is the modified Bessel function of the second kind, and Γ(x) is the Gamma function. We 
calculated the above formulas analytically for d = 1, 2, 3 with the assistance of Mathematica and conjec-
tured the case for general dimension d, which we confirmed numerically for d ≤ 10.

We want to explain two technical points relevant to the interpretation of our numerical results and 
the choice of f(⃗x). Unlike the case in the usual ERM, here we allow f(⃗x) to be non-integrable (over Rd), 
which is crucial to allow power law f(⃗x). The nonintegrability violates a condition in the classical conver-
gence results of the ERM spectrum (Bordenave, 2008) as N → ∞. We believe that this is exactly the 
reason for the departure of the first few eigenvalues from our theoretical spectrum (e.g., in Figure 3). 

Table 3. Modifications of the shape of f(⃗x) near ∥⃗x∥ = 0 used in Appendix 1—figures 1–3.
Flat: when ∥⃗x∥ < ϵ, f(⃗x) = 1. Tangent: when ∥⃗x∥ < cϵ, f(⃗x) follows a tangent line of the exact power law (b∥⃗x∥ + 1 and ϵµ

∥⃗x∥µ  have a 
same first-order derivative when ∥⃗x∥ = cϵ). b and c are constants. Tent: when ∥⃗x∥ < cϵ, f(⃗x) follows a straight line while the slope is 
not the same as the tangent case. Parabola: when ∥⃗x∥ < cϵ, f(⃗x) follows a quadratic function (ax2 + 1 and ϵµ

∥⃗x∥µ  have same first-order 
derivative). t pdf: mimic the smoothing treatment like the t distribution. All the constant parameters are set such that f(0) = 1.

f(⃗x) Definition

Flat

f
(⃗
x
)

=

{
1, ∥⃗x∥ < ϵ
eµ

∥⃗x∥µ , ∥⃗x∥ ≥ ϵ

Tangent

f
(⃗
x
)

=

{
b∥⃗x∥ + 1, ∥⃗x∥ < cϵ, f ′(cϵ) = b

eµ
∥⃗x∥µ , ∥⃗x∥ ≥ cϵ

Tent
f
(⃗
x
)

=

{
b∥⃗x∥ + 1, ∥⃗x∥ < cϵ, f ′(cϵ) ̸= b

eµ
∥⃗x∥µ , ∥⃗x∥ ≥ cϵ

Parabola
f
(⃗
x
)

=

{
b∥⃗x∥2 + 1, ∥⃗x∥ < cϵ, f ′(cϵ) = 2bcϵ

eµ
∥⃗x∥µ , ∥⃗x∥ ≥ cϵ

t pdf f(⃗x) = εµ(ε2 + ∥⃗x∥2)−µ/2
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Our hypothesis is also supported by ERM simulations with integrable f(⃗x) (Figure 3—figure supple-
ment 1), where the numerical eigenspectrum matches closely with our theoretical one, including 
the leading eigenvalues. For ERM to be a legitimate model for covariance matrices, we need to 
ensure that the resulting matrix C is positive semidefinite. According to the Bochner theorem (Rudin, 
1990), this is equivalent to the Fourier transform (FT) of the kernel function f̃(⃗k) being nonnegative 

for all frequencies. For example, in 1D, a rectangle function rect(x) =





1, if |x| ≤ 1
2

0, otherwise
 does not meet 

the condition (its FT is sinc(x) = sin(x)
x ), but a tent function tent(x) =





1 − |x|, if |x| ≤ 1

0, otherwise
 does (its FT 

is sinc2(x)). For the particular kernel function f(⃗x) in Equation 11, this condition can be easily veri-
fied using the analytical expressions of its Fourier transform (Equation 12). The integral expression 
for Kα(x), given as Kα(x) =

´∞
0 e−x cosh t cosh(αt)dt, shows that Kα(x) is positive for all x > 0. Likewise, the 

Gamma function Γ(x) > 0. Therefore, the Fourier transform of Equation 11 is positive and the resulting 
matrix C (of any size and values of x⃗i) is guaranteed to be positive definite.

Building upon the theory outlined above, numerical simulations further validated the empirical 
robustness of our ERM model, as showcased in Figures 3B–D and 4A. In Figure 3B–D, the ERM 
was characterized by the parameters N = 1024, d = 2, L = 10, ρ = 10.24, and µ = 0.5 and ϵ = 0.03125 for 
f(⃗x). To numerically compute the eigenvalue probability density function, we generated the ERM 100 
times, each sampled using the method described in Methods. The pdf was computed by calculating 
the pdf of each ERM realization and averaging these across the instances. The curves in Figure 3D 
showed the average of over 100 ERM simulations. The shaded area (most of which is smaller than the 
marker size) represented the SEM. For Figure 4A, the columns from left to right were corresponded 
to µ = 0.5, 0.9, 1.3,  and the rows from top to bottom were corresponded to d = 1, 2, 3. Other ERM simu-
lation parameters: N = 4096, ρ = 256, L = (N/ρ)1/d, ϵ = 0.03125, and σ2

i = 1. It should be noted that for 
Figure 4A, the presented data pertain to a single ERM realization.

Collapse index
We quantify the extent of scale invariance using CI defined as the area between two spectrum curves 
(Figure 4A, upper right), providing an intuitive measure of the shift of the eigenspectrum when varying 
the number of sampled neurons. We chose the CI over other measures of distance between distribu-
tions for several reasons. First, it directly quantifies the shift of the eigenspectrum, providing a clear 
and interpretable measure of scale invariance. Second, unlike methods that rely on estimating the 
full distribution, the CI avoids potential inaccuracies in estimating the probability of the top leading 
eigenvalues. Finally, the use of CI is motivated by theoretical considerations, namely the ERM in the 
high-density regime, which provides an analytical expression for the covariance spectrum (Equation 
3) valid for large eigenvalues.

	
CI := 1

log(q0/q1)

ˆ log q0

log q1

∣∣∣∣
∂ logλ(q)
∂ log ρ

∣∣∣∣ d log q,
�

(13)

we set q1 such that λ(q1) = 1, which is the mean of the eigenvalues of a normalized covariance matrix. 
The other integration limit q0 is set to 0.01 such that λ(q0) is the 1% largest eigenvalue.

Here, we provide numerical details on calculating CI for the ERM simulations and experimental 
data.

A calculation of CI for experimental datasets/ERM model
To calculate CI for a covariance matrix C of size N0, we first computed its eigenvalues λ0

i  and those of 
the sampled block Cs of size Ns = N0/2, denoted as λs

i  (averaged over 20 times for the ERM simulation 
and 2000 times in experimental data). Next, we estimated logλ(q) using the eigenvalues of C0 and Cs at 
q = i/Ns, i = 1, 2, . . . , Ns. For the sampled Cs, we simply had logλ(q = i/Ns) = logλs

i , its ith largest eigenvalue. 
For the original C0, logλ(q = i/Ns) was estimated by a linear interpolation, on the logλ− log q scale, 
using the value of logλ(q) in the nearest neighboring q = i/N0’s (which again are simply logλ0

i ). Finally, 
the integral (Equation 13) was computed using the trapezoidal rule, discretized at q = i/Ns’s, using the 
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finite difference ∂ log λ(q)
∂ log ρ

≈ 1
log(N0/Ns)

∣∣∆ logλ(q)
∣∣, where ∆ denotes the difference between the original 

eigenvalues of C0 and those of sampled Cs.

Estimating CI using the variational method
In the definition of CI (Equation 13), calculating λ(q) and ∂ log λ(q)

∂ log ρ
 directly using the variational method 

is difficult, but we can make use of an implicit differentiation

	

∂ logλ(q, ρ)
∂ log ρ

= ρ

λ

∂λ(q, ρ)
∂ρ

= − ρ

λ

∂q(ρ,λ)
∂ρ

∂q(ρ,λ)
∂λ

,

�

(14)

where q(λ) :=
´∞
λ p(λ)dλ is the complementary cdf (the inverse function of λ(q) in Methods). Using this, 

the integral in CI (Equation 13) can be rewritten as

	

ˆ log q0

log q1

∣∣∣∣
∂ logλ(q, ρ)

∂ log ρ

∣∣∣∣ d log q =
ˆ q0

q1

∣∣∣∣∣∣∣∣
− ρ

qλ

∂q
∂ρ
∂q
∂λ

∣∣∣∣∣∣∣∣
dq

=
ˆ λ(q0)

λ(q1)

∣∣∣∣∣∣∣∣
− ρ

qλ

∂q
∂ρ

y

∂q
∂λ

∣∣∣∣∣∣∣∣
∂q
∂λ

dλ =
ˆ λ(q1)

λ(q0)

∣∣∣∣
1
λ

∂ log q
∂ log ρ

∣∣∣∣ dλ.

�

(15)

Since ∂q
∂λ

= −p(λ) < 0, we switch the order of the integration interval in the final expression of Equa-
tion 15.

First, we explain how to compute the complementary cdf q(λ) numerically using the variational 
method. The key is to integrate the probability density function p(λ) from λ to a finite λ(qs) rather 
than to infinity,

	
q(λ) =

ˆ ∞

λ
p(λ)dλ =

ˆ ∞

λ(qs)
p(λ)dλ +

ˆ λ(qs)

λ
p(λ)dλ = qs +

ˆ λ(qs)

λ
p(λ)dλ.

�
(16)

The integration limit λ(qs) cannot be calculated directly using the variational method. We thus used 
the value of λs(qs ≈ q0) (Methods) from simulations of the ERM with a large N = 1024 as an approxima-
tion. Furthermore, we employed a smoothing technique to reduce bias in the estimation of λs(qs) due 
to the leading zigzag eigenvalues (i.e., the largest eigenvalues) of the eigenspectrum. Specifically, we 
determined the nearest rank j < Nq0 and then smoothed the eigenvalue logλs(qs) on the log–log scale 

using the formula logλs(qs) = 1
3

2∑
i=0

logλs( j+i
N ) and log qs = 1

3

2∑
i=0

log j+i
N

, averaging over 100 ERM simulations.

Note that we can alternatively use the high-density theory (Appendix 2) to compute the integration 
limit λ(qs = 1/N) instead of resorting to simulations. However, since the true value deviates from the 
λh(qs = 1/N) derived from high-density theory, this approach introduces a constant bias (Figure 4—
figure supplement 2) when computing the integral in Equation 16. Therefore we used the simulation 
value λs(qs ≈ q0) when producing Figure 4—figure supplement 2AB.

Next, we describe how each term within the integral of Equation 15 was numerically estimated. 
First, we calculated ∂ log q

∂ log ρ
 with a similar method described in Methods. Briefly, we calculated q0(λ) 

for density ρ0 = N0
Ld  and qs(λ) for density ρs = Ns

Ld , and then used the finite difference 1
log(ρ0/ρs)

∣∣∆ log q(λ)
∣∣. 

Second, ∂ log q(λ)
∂ log ρ

 was evaluated at λ = λ(q1) + iλ(q0)−λ(q1)
k−1 , where i = 0, 1, 2, . . . , k − 1, and we used k = 20. 

Finally, we performed a cubic spline interpolation of the term ∂ log q
∂ log ρ

, and obtained the theoretical CI 
by an integration of Equation 15. Figure 4—figure supplement 2A, B shows a comparison between 
theoretical CI and that obtained by numerical simulations of ERM (Methods).

Fitting ERM to data
Estimating the ERM parameters
Our ERM model has four parameters: µ and ϵ dictate the kernel function f(⃗x), whereas the box size 

L and the embedding dimension d determine the neuronal density ρ. In the following, we describe 
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an approximate method to estimate these parameters from pairwise correlations measured experi-
mentally Rij = Cij

σiσj
. We proceed by deriving a relationship between the correlation probability density 

distribution h(R) and the pairwise distance probability density distribution g(u) := g(∥⃗x1 − x⃗2∥) in the 
functional space, from which the parameters of the ERM can be estimated.

Consider a distribution of neurons in the functional space with a coordinate distribution p(⃗x). The 
pairwise distance density function g(u) is related to the spatial point density by the following formula:

	
g(u) =

ˆ

[0,L]d
p(⃗x1)p(⃗x2)δ(∥⃗x1 − x⃗2∥ − u)d⃗x1d⃗x2

�
(17)

For ease of notation, we subsequently omit the region of integration, which is the same as here. 
In the case of a uniform distribution, p(⃗x1) = p(⃗x2) = 1/V = 1/Ld. For other spatial distributions, Equation 
17 cannot be explicitly evaluated. We therefore make a similar approximation by focusing on a small 
pairwise distance (i.e., large correlation):

	
p(⃗x1) ≈ p(⃗x2) ≈ p( x⃗1 + x⃗2

2
)
�

(18)

By a change of variables:

	
X⃗ = x⃗1 + x⃗2

2
, u⃗ = x⃗1 − x⃗2,

�

Equation 17 can be rewritten as

	
g(u) ≈

ˆ
p2(X⃗)δ(∥⃗u∥ − u)dX⃗d⃗u = Sd−1(u)

ˆ
p2(X⃗)dX⃗

�
(19)

where Sd−1(u) is the surface area of d − 1 sphere with radius u. Note that the approximation of g(u) is 
not normalized to 1, as Equation 19 provides an approximation valid only for small pairwise distances 
(i.e., large correlation). Therefore, we believe this does not pose an issue.

With the approximate power-law kernel function R = f(u) ≈ ( ϵu )µ, the probability density function of 
pairwise correlation h(R) is given by:

	

h(R) = g(u)
∣∣∣∣

du
dR

∣∣∣∣ = 2π
d
2 ϵd

Γ( d
2

)µR(µ+d)/µ

ˆ
p2(X⃗)dX⃗

�

(20)

Taking the logarithm on both sides

	

log h(R) = log
(
ϵd
ˆ

p2(X⃗)dX⃗
)

+ log 2π
d
2

Γ( d
2

)µ
− µ + d

µ
log R

�

(21)

Equation 21 is the key formula for ERM parameters estimation. In the case of a uniform spatial 
distribution, ϵd ´ p2(X⃗)dX⃗ = ϵd/V = (ϵ/L)d. For a given dimension d, we can therefore estimate µ and (ϵ/L)d 
separately by fitting h(R) on the log–log scale using the linear least squares. Lastly, we fit the distribu-
tion of σ2 (the diagonal entries of the covariance matrix C) to a log-normal distribution by estimating 
the maximum likelihood.

There is a redundancy between the unit of the functional space (using a rescaled ϵδ ≡ ϵ/δ) and the 
unit of f(⃗x) (using a rescaled fδ (⃗x) ≡ f(⃗x/δ)), thus ϵ and L are a pair of redundant parameters: once ε is 
given, L is also determined. We set ϵ = 0.03125 throughout the article. In summary, for a given dimen-
sion d and ϵ, µ of f(⃗x) (Equation 11), the distribution of σ2 and ρ (or equivalently L) can be fitted 
by comparing the distribution of pairwise correlations in experimental data and ERM. Furthermore, 
knowing (ϵ/L)d enables us to determine a fundamental dimensionless parameter

	 ρϵd := N(ϵ/L)d,� (22)
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which tells us whether the experimental data are better described by the high-density theory or the 
Gaussian variational method (Appendix 2). Indeed, the fitted ρϵd ∼ 10−3 − 100 is much smaller than 1, 
consistent with our earlier conclusion that neural data are better described by an ERM model in the 
intermediate-density regime.

Notably, we found that a smaller embedding dimension d ≤ 5 gave a better fit to the overall pair-
wise correlation distribution. The following is an empirical explanation. As d grows, to best fit the 
slope of log h(R) − log R, µ will also grow. However, for very high dimensions d, the y-intercept would 
become very negative, or equivalently, the fitted correlation would become extremely small. This 
can be verified by examining the leading order log R independent term in Equation 21, which can 
be approximated as d log ϵ

L + d
2

(
logπ + 1 − log d

2

)
. It becomes very negative for large d since ϵ ≪ L by 

construction. Throughout this article, we use d = 2 when fitting the experimental data with our ERM 
model.

The above calculation can be extended to the cases where the coordinate distribution p(⃗x) becomes 
dependent on other parameters. To estimate the parameters in coordinate distributions that can 
generate ERMs with a similar pairwise correlation distribution (Appendix 1—figure 1), we fixed the 
integral value 

´
p2(⃗x)d⃗x . Consider, for example, a transformation of the uniform coordinate distribution 

to the normal distribution N (µp = 0,σ2
pI) in R2. We imposed 

´
p2(⃗x)d⃗x = 1/(4πσ2

p) = 1/L2. For the log-
normal distribution, a similar calculation led to L exp(σ2

p /4 − µp) = 2
√
πσp. The numerical values for 

these parameters are shown in Appendix 1. However, note that due to the approximation we used 
(Equation 18), our estimate of the ERM parameters becomes less accurate if the density function p(⃗x) 
changes rapidly over a short distance in the functional space. More sophisticated methods, such as 
grid search, may be needed to tackle such a scenario.

After determining the parameters of the ERM, we first examine the spectrum of the ERM with 
uniformly distributed random functional coordinates x⃗i ∈ [0, L]d (Figure  5—figure supplement 
1M–R). Second, we use f(⃗x) to translate experimental pairwise correlations into pairwise distances for 
all neurons in the functional space (Figure 5—figure supplement 2, Figure 5—figure supplement 
1G–L). The embedding coordinates ⃗xi in the functional space can then be solved through multidimen-
sional scaling (MDS) by minimizing the Sammon error (Methods). The similarity between the spectra of 
the uniformly distributed coordinates (Figure 5—figure supplement 1M–R) and those of the embed-
ding coordinates (Figure 5—figure supplement 1G–L) is also consistent with the notion that specific 
coordinate distributions in the functional space have little impact on the shape of the eigenspectrum 
(Appendix 1—figure 1).

Nonnegativity of data covariance
To use ERM to model the covariance matrix, the pairwise correlation is given by a non-negative kernel 
function f(⃗x) that monotonically decreases with the distance between neurons in the functional space. 
This nonnegativeness brings about a potential issue when applied to experimental data, where, in fact, 
a small fraction of pairwise correlations/covariances are negative. We have verified that the spectrum 
of the data covariance matrix (Figure 2—figure supplement 3) remains virtually unchanged when 
replacing these negative covariances with zero (Figure 2—figure supplement 3). This confirms that 
the ERM remains a good model when the neural dynamics is in a regime where pairwise covariances 
are mostly positive Dahmen et  al., 2019 (see also Figure 2—figure supplement 2B, Figure 2—
figure supplement 2B–D).

Multidimensional scaling
With the estimated ERM parameters (µ in f(⃗x) and the box size L for given ϵ and d, see Methods), we 
performed MDS to infer neuronal coordinates x⃗i in functional space. First, we computed a pairwise 
correlation Rij = Cij

σiσj
 from the data covariances. Next, we calculated the pairwise distance, denoted by 

u∗ij, by computing the inverse function of f(⃗x) with respect to the absolute value of Rij, u∗ij = f −1(|Rij|). 
We used the absolute value |Rij| instead of Rij as a small percentage of Rij are negative (Figure 2—
figure supplement 2A–D) where the distance is undefined. This substitution by the absolute value 
serves as a simple workaround for the issue and is only used here in the analysis to infer the neuronal 
coordinates by MDS. Finally, we estimated the embedding coordinates x⃗i for each neuron by the 
SMACOF algorithm (Scaling by MAjorizing a COmplicated Function), which minimizes the Sammon 
error

https://doi.org/10.7554/eLife.100666
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E = 1∑
i<j

u∗ij

∑
i<j

(u∗ij − uij)2

u∗ij
�

(23)

where uij = ∥⃗xi − x⃗j∥ is the pairwise distance in the embedding space calculated above. To reduce 
errors at large distances (i.e., small correlations with Rij < f(L), where L is the estimated box size), we 
performed a soft cut-off at a large distance:

	

u∗ij = f −1(|Rij|), Rij ≥ f(L)

u∗ij = L log(f −1(|Rij|)/L) + L, Rij < f(L)
 
�

(24)

During the optimization process, we started at the embedding coordinates estimated by the clas-
sical MDS (Cox and Cox, 2000), with an initial sum of squares distance error that can be calculated 
directly, and ended with an error or its gradient smaller than 10−4.

The fitted ERM with the embedding coordinates ⃗xi reproduced the experimental covariance matrix 
including the cluster structures (Figure  5—figure supplement 2) and its sampling eigenspectra 
(Figure 5—figure supplement 1).

Canonical correlation analysis
Here we briefly explain the CCA method (Knapp, 1978) for completeness. The basis vectors v⃗func 
and v⃗anat, in functional and anatomical space, respectively, were found by maximizing the correla-
tion RCCA = corr({⃗vfunc · x⃗i}, {⃗vanat · y⃗i}). These basis vectors satisfy the condition that the projections 
of the neuron coordinates along them, {⃗xi · v⃗func} and {⃗yi · v⃗anat}, are maximally correlated among all 
possible choices of ⃗vfunc and ⃗vanat. Here, {⃗xi}, {⃗yi} represent the coordinates in functional and anatom-
ical spaces, respectively. The resulting maximum correlation is RCCA. To check the significance of the 
canonical correlation, we shuffled the functional space coordinates {⃗xi} across neurons’ identity and 
re-calculated the canonical correlation with the anatomical coordinates, as shown in Figure 5—figure 
supplement 4.

To study the effect of functional–anatomical relation described by RCCA in the ERM model, we 
generated three-dimensional anatomical coordinates {⃗yi} and two-dimensional functional coordinates 
{⃗xi} for each neuron which are jointly five-dimensional zero-mean multivariate Gaussian random vari-
ables. The coordinates are independent among each other, except for the first dimension {⃗x1

i } of the 
functional coordinates and the first dimension {⃗y1

i }, which are assigned to have a correlation coefficient 
equals to RCCA. The variances of the coordinates are σ2

y1 = 1,σ2
y2 = 1,σ2

y3 = 1, and σ2
x1 = 2,σ2

x2 = 1 for 
the numerics in Figure 5—figure supplement 7. Under this construction, the first canonical correla-
tion between the anatomical and functional coordinates equals RCCA, and the first canonical direction 
v⃗anat in the anatomical space is (1, 0, 0)T  and the first canonical direction v⃗func in the functional space 
is (1, 0)T .

Spectrum of three types of sampling procedures in ERM model
In Result, we have considered three types of sampling procedures: random sampling (RSap), spatial 
sampling in the anatomical space (ASap, e.g., recording neurons in a brain region), and spatial 
sampling in the functional space (FSap), namely spatial sampling in functional space by subdividing the 
space into smaller regions, is equivalent to the previously reported RG inspired process (Bradde and 
Bialek, 2017). Here, we consider the relationship between the spectrum of three types of sampling 
procedures.

We assume a uniform random distribution of neurons in a d-dimensional functional space, [0, L]d. 
For RSap procedures, the resulting neuronal density ρR is reduced to ρR = kρ0, with k representing 
the sampling ratio (k = N/N0) and ρ0 being the initial density. In contrast, FSap maintains the original 
density, ρF = ρ0. This constancy in neuronal density under FSap ensures that the covariance eigen-
spectrum remains invariant across scales for any spatial correlation functions f(⃗x), such as power law 
and exponential, as shown in Appendix 1—figure 5A, B, D, E. In contrast, RSap reduces ρ, thus 
demanding more rigorous conditions to achieve a scale-invariant covariance spectrum (e.g., compare 
Appendix 1—figure 5A, C).

Under ASap, sampled neurons are not spread out evenly in functional space, whereas our theo-
retical framework assumes a uniform distribution. To reconcile this discrepancy, we employ a uniform 

https://doi.org/10.7554/eLife.100666
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approximation of the neural distribution. This approach involves introducing an effective density, ρ′, 
defined as the spatial average of the density function ρ(⃗x). This adjustment allows our theoretical 
model to accommodate non-uniform distributions encountered in anatomically spatial sampling.

	
ρ′ ≡ ⟨ρ(⃗x)⟩ =

ˆ
p(⃗x)ρ(⃗x)d⃗x = kN0

ˆ
p2(⃗x)d⃗x,

�
(25)

where p(⃗x) is the normalized density distribution (see Methods).
Using the Cauchy–Schwarz inequality, we have

	

ˆ
p2(⃗x)d⃗x

ˆ
d⃗x ≥ (

ˆ
p(⃗x)d⃗x)2

�
(26)

thus ρ′ ≥ kρ0.
According to the condition p(⃗x) < 1

kV , we have ρ′ ≤ ρ0, intuitively, sampling within a uniformly 
distributed neuron population does not increase the density.

So we have ρ0 ≥ ρ′A ≥ kρ0, that is, ρF ≥ ρ′A ≥ ρR. Thus, the spectrum ASap should be between FSap 
and RSap.

Dimensions of three types of sampling procedures in ERM model
Scaling of dimensions through random sampling
Let us revisit the definition of the participation ratio (PR) dimension as defined in Equation 5:

	
DPR(C) =

(∑
i λi

)2

∑
i λ

2
i

=
(
Tr(C)

)2

Tr(C2)
= N2E(σ2)2

NE(σ4) + N(N − 1)Ei̸=j(C2
ij)�

(27)

During the random sampling process, the expected values E(σ2), E(σ4), and Ei̸=j(C2
ij) remain 

constant. These constants allow for the estimation of the PR dimension across various scales using:

	
DRSap

PR = kN0E(σ2)2

E(σ4) + (kN0 − 1)Ei ̸=j(C2
ij)

 
�

(28)

Here, k = N/N0 represents a scaling factor (fraction) associated with sampling. The key question is 
to understand how the dimensionality changes with k. Under random sampling, as k increases, the 
dimensionality will quickly approaches a saturating point defined by Equation 1.

Scaling of dimensions through functional sampling
In this section, we leverage the uniform ERM model to estimate dimensions within the context of 
functional sampling, specifically focusing on the estimation of squared pairwise covariance Ei̸=j(C2

ij) 
and dimensionality. Adopting an approximation for a power-law kernel function f(x) ≈ ϵµ∥x∥−µ allows 
us to express the expected value of the squared covariance Ei̸=j(C2

ij) as follows:

	

Ei̸=j(C
2
ij) =

ˆ

[0,L]d
p(⃗x1)p(⃗x2)f 2(∥⃗x1 − x⃗2∥)d⃗x1d⃗x2

≈
ˆ

[0,L]d
p(⃗x1)p(⃗x2)ϵ2µ∥⃗x1 − x⃗2∥−2µd⃗x1d⃗x2.

�

(29)

For a set subjected to functional sampling with a sampling fraction k, this procedure adjusts the 
size of the functional space in the ERM model by a factor of k−1/d. Consequently, the Ek

i̸=j(C
2
ij) for the 

sampled fraction k is given by:

https://doi.org/10.7554/eLife.100666
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Ek
i̸=j(C

2
ij) =

ˆ

[0,k1/dL]d
p(⃗x1)p(⃗x2)f 2(∥⃗x1 − x⃗2∥)d⃗x1d⃗x2

=
ˆ

[0,L]d
p(⃗x1)p(⃗x2)f 2(k1/d∥⃗x1 − x⃗2∥)d⃗x1d⃗x2

≈
ˆ

[0,L]d
p(⃗x1)p(⃗x2)ϵ2µk−2µ/d∥⃗x1 − x⃗2∥−2µd⃗x1d⃗x2

≈ k−2µ/dEi̸=j(C
2
ij), �

(30)

Here, we assume that E[σ2] and E[σ4] are constant across the sampling process. This model enables 
the estimation of the ratio µ/d as detailed in the Methods.

	
DFSap

PR ≈ kN0E(σ2)2

E(σ4) + (kN0 − 1)k−2µ/dEi̸=j(C2
ij)�

(31)

In the large N  limit, we observe distinct behaviors in the evolution of dimensionality in both theory 
and data: it saturates in RSap (dashed line in Figure 5D), namely DRSap

PR ≈ DPR defined in Equation 1, 

whereas it follows a different scaling relationship DFSap
PR ≈ k2µ/dDPR in FSap (solid line in Figure 5D).

Comparative analysis of PR dimension across sampling techniques
This section examines the behavior of the PR dimension under three sampling techniques: anatom-
ical sampling, random sampling, and functional sampling. We show that the average PR dimension 
following anatomical sampling occupies a middle ground between the extremes presented by random 
and functional sampling.

The PR dimension, denoted DPR, reflects the sampling impact and depends on the distribution 
p(X⃗) of the functional coordinates X⃗ . Defining the sampling fraction as k = 1/q, the mean DPR is repre-
sented as:

	
mean(DPR) = 1

q

q∑
i=1

Di
PR = 1

q

q∑
i=1

J(pi(X⃗)),
�

(32)

where the neuron set 1, 2, ..., N  is segmented into q clusters {X⃗1, X⃗2, ..., X⃗q}, each comprising Nq  neurons. 
The probability distribution pi(X⃗) corresponds to each cluster {X⃗i}. The probability distribution for 
each cluster, pi(X⃗), emerges naturally from the sampling process.

The equivalence of the mean probability density function across the sampled clusters to the orig-
inal set’s probability density function leads us to the condition:

	

1
q

q∑
i=1

pi(X⃗) = p(X⃗),
�

(33)

This condition is a direct consequence of the sampling process, ensuring that the aggregated 
probability density function of all sampled sets mirrors the overall density distribution of the neurons.

Applying the Lagrange multiplier method to optimize the mean DPR:

	
L(p,λ) = 1

q

q∑
i=1

J(pi(X⃗)) +
ˆ

D
ddX⃗λ(X⃗)

(
1
q

q∑
i=1

pi(X⃗) − p(X⃗)

)
,
�

(34)

Here, L(p,λ) is the Lagrangian, λ(X⃗) is the Lagrange multiplier, we derive the optimal condition:

	

∂L(p,λ)
∂pi

= 0,
�

(35)

yielding:

	

1
q

∂J
∂pi(X⃗)

+ λ(X⃗)
q

= 0.
�

(36)
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At the optimal mean DPR, each p(X⃗i) is equivalent, leading to p(X⃗i) = p(X⃗j) = p(X⃗) (representative 
of random sampling). Hence, the mean DPR post-random sampling sets the upper limit for the mean 
DPR after anatomical sampling.

Let us investigate the lower bound of the mean PR dimension with the ERM model. For the mini-
mization of mean (DPR), a key requirement is the functional spatial proximity of neurons within the 
same cluster, in other words, the neuron set should be distinctly separated in functional space. Conse-
quently, achieving the minimum mean PR dimension necessitates a functional sampling strategy.

Derive upper bound of dimension from spectrum
To deduce DPR from the spectrum, for simplicity, we focus on the high-density region, where we have 
an analytical expression for λ that is valid for large eigenvalues:

	
λr = γ

( r
N

)−1+
µ

d · ρ
µ

d = γr
−1+

µ

d L−µN for r ≤ β(N),
�

(37)

where L is the size of the functional space, γ is the coefficient in Equation 3, which depends on d, 
µ, and E(σ2). Note that the eigenvalue λr decays rapidly after the threshold r = β(N). Since we did 
not discuss small eigenvalues in this article, we represent them here as an unknown function η(r, N, L):

	 λr = η(r, N, L) for r > β(N)� (38)

As discussed in Methods, without changing the properties of the spectrum, we can always impose 
E(σ2) = 1 such that

	

N∑
r=1

λr = Tr(C) = N
�

(39)

We emphasize that this constraint requires that large and small eigenvalues behave differently 
because otherwise 

∑N
r=1 r−α with α < 1 would scale as N1−α, and 

∑N
r=1 λr is not proportional to N .

Using the Cauchy–Schwarz inequality, we have an upper bound of 
∑N

r=1 λ
2
r :

	

N∑
r=1

λ2
r ≤

(∑
r

λr

)2

= N2

�
(40)

On the other hand, λ2
1 is a lower bound of 

∑N
r=1 λ

2
r :

	

N∑
r=1

λ2
r > λ2

1 = L−2µN2γ2

�
(41)

As a result, the dimensionality

	
DPR =

(∑N
r=1 λr

)2

∑N
r=1 λ

2
r

,
�

is bounded as

	 1 ≤ DPR < L2µγ−2
� (42)

Under random sampling, L remains fixed. Thus, we must have a bounded dimensionality that is 
independent of N  for our ERM model. A tighter lower bound of 

∑N
r=1 λ

2
r  is

	

N∑
r=1

λ2
r > γ2L−2µN2

β(N)∑
r=1

(
r−2+2µ/d

)

�
(43)

A tighter upper bound of participation ratio DPR can be written as:

https://doi.org/10.7554/eLife.100666
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DPR =

(∑N
r=1 λr

)2

∑N
r=1 λ

2
r

< L2µγ−2
∑β(N)

r=1
(
r−2+2µ/d

) < L2µγ−2

�

(44)

However, in functional sampling, enlarging the region size with constant density ρ results in 
L ∼ N1/d. Thus, the upper bound of DPR should grow as N2µ/d, consistent with the previously derived 
result (Equation 31) in Methods.

Simulating CCA and anatomical sampling
In this section, we estimate the dimensions of the anatomically sampled neuron set. For simplicity, we 
assume that the functional coordinates of neurons, Xi, and the anatomical coordinates of neurons, 
Yi, both follow a multivariate Gaussian distribution. We define anatomical sampling, which involves 
sampling on Yi, along a direction chosen arbitrarily and denote this direction as YA. Subsequently, 
we perform sampling on Xi in the direction denoted by XA, which is determined to have the highest 
correlation with YA according to CCA. This process effectively mimics the scenario of functional 
sampling.

The key to calculating the PR dimension involves computing the expected value Ei̸=j(C2
ij). In the 

ERM model, the distribution of Cij can be estimated by the distribution of points in the functional 
space. This allows for the calculation of the PR dimension across anatomical sampling by comparing 
the distribution of Xi after anatomical sampling with that after functional sampling. We can model the 
distribution of XA and YA as follows:

	

RASap = corr(XA, YA),

CASap = corr(XA, YA)σxσy,

XA

YA


 ∼ N




0

0


 ,


 σ2

x CASap

CASap σ2
y




 ,

�

(45)

Here, we consider only the projection of the functional coordinate onto the direction XA, which 
exhibits the highest correlation, denoted by RASap, with YA. Specifically, when selecting the anatomical 
direction as the first CCA direction, the correlation between XA and YA reaches its maximum, such 
that RASap = RCCA. In this case, anatomical sampling results in the minimization of the dimensionality.

Now, let us perform anatomical sampling on the neurons. The X⃗i and ⃗Yi denote the functional and 
anatomical coordinates of the ith neuron cluster after anatomical sampling, respectively.

To approximate, we need to calculate the functional coordinate probability distribution 
p(X⃗i) = p(X⃗|qy

ik < YA < qy
(i+1)k), which is the distribution of the ith neuron cluster after anatomical 

sampling. YA represents the selected direction in anatomical space, and qy
ik denotes the ikth quantile 

of YA, where k is the sampled fraction. Note the following relationships and distributions:

	

p(XA|YA = y) = p(XA, YA = y)
p(YA = y)

,

p(XA|YA = y) ∼ N
(

yσx
σy

RASap,σ2
x (1 − R2

ASap)
)

.
�

(46)

	
p(XA

i ) = p(XA|qy
ik < YA < qy

(i+1)k) = 1
k

ˆ qy
(i+1)k

qy
ik

p(XA|YA = y)dy
�

(47)

The conditional probability distribution P(XA|qy
ik < YA < qy

(i+1)k) is equivalent to the distribution of 

the sum of YA
i
σx
σy

RASap and X0, where X0 ∼ N (0,σ2
x (1 − R2

ASap)):

	
XA

i = YA
i
σx
σy

RASap + X0,
�

(48)
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p(YA
i = y) =





1
k
√

2πσy
exp

(
− y2

2σ2
y

)
for qy

ik < y < qy
(i+1)k,

0 otherwise. �

(49)

The computation of XA
i  involves two technical challenges: (1) The distribution of YA

i  is represented 
by a non-elementary function (Equation 49), which complicates the direct calculation of XA

i , which is 
the sum of YA

i RASapσx/σy and X0. To facilitate approximation, we model YA
i  using a normal distribution 

with equivalent variance. (2) Calculating the variance of YA
i  presents direct challenges, and the variance 

of YA
i  differs across different neuron clusters i. Using a uniform distribution for Y  simplifies this task 

(this assumption is only used to calculate the variance of YA
i ). Under this assumption, the variance of 

YA
i  can be straightforwardly calculated as Var(YA

i ) = k2σ2
y . Consequently, we approximate YA

i  and XA
i  

as follows:

	
YA

i ∼ N

(
qy

ik + qy
(i+1)k

2
, k2σ2

y

)
,
�

(50)

	
XA

i ∼ N

(
qy

ik + qy
(i+1)k

2
σx
σy

RASap,σ2
x (1 − R2

ASap + k2R2
ASap)

)
.
�

(51)

Calculating the PR dimension directly from the distribution of XA
i  is difficult; thus, we approximate 

anatomical sampling with fraction k as functional sampling with fraction kf , leading to:

	
kf =

√
1 + k2R2

ASap − R2
ASap.

� (52)

Using the equation for functional sampling Ek
i̸=j(C

2
ij) ≈ k−2µ/dEi ̸=j(C2

ij) (Equation 30):

	 Ek
i̸=j(C

2
ij) ≈ (1 + k2R2

ASap − R2
ASap)−µ/dEi̸=j(C

2
ij).� (53)

	
DASap

PR ≈ kN0E(σ2)2

E(σ4) + (kN0 − 1)(1 + k2R2
ASap − R2

ASap)−µ/dEi̸=j(C2
ij)�

(54)
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Appendix 1
Extensions of ERM and factors not affecting the scale invariance
In Appendix  1—figure 1, we considered five additional types of spatial density distributions 
(coordinate distributions) in functional space and two additional functional space geometries. 
We examined the points distributed according to the uniform distribution ( x⃗ ∼ 1/Ld), the normal 
distribution ( x⃗ ∼ N (µp,σ2

pI)), and the log-normal distribution (log x⃗ ∼ N (µp,σ2
pI)). We used the 

method described in Methods to adjust the parameters of the coordinate distributions based on 
the uniform distribution case, so that they all generate similar pairwise correlation distributions. The 
relationships between these parameters are described in Methods. In Appendix 1—figure 1B, we 
used the following parameters: d = 2 for the uniform distribution; µp = 0, σp = 2.82 for the normal 
distribution; and µp = 2, σp = 0.39 for the log-normal distribution.

Second, we introduced multiple clusters of neurons in the functional space, with each cluster 
uniformly distributed in a box. We considered three arrangements: (1) two closely situated clusters 
(with a box size of L = 5

√
2, the distance between two cluster centers being Lc = L), and (2) two 

distantly situated clusters (with a box size of L = 5
√

2 and the distance between clusters Lc = 4L), 
and three clusters arranged symmetrically in an equilateral triangle (with a box size of L = 10/

√
3 and 

the distance between clusters Lc = L).
Finally, we examined the scenario in which the points were uniformly distributed on the surface 

of a sphere (4πl2 = L2, l being the radius of the sphere) or a hemisphere (2πl2 = L2) embedded in R3 
(the pairwise distance is that in R3). It should be noted that both cases have the same surface area 
as the 2D box.

Appendix 1—figure 1. Factors that do not affect the scale invariance. (A) Rank plot of the covariance 
eigenspectrum for ERMs with different f(⃗x) (see Table 3). Diagrams show different slow-decaying kernel functions 
f(⃗x) along a 1D slice. (B) Same as A but for different coordinate distributions in the functional space (see text). 
The diagrams on the right illustrate uniform and clustered coordinate distributions. (C) Same as A but for different 
geometries of the functional space (see text). Diagrams illustrate spherical and hemispherical surfaces. (D) CI of 
the different ERMs considered in (A–C). The range on the y-axis is identical to Figure 4C. On the x-axis, 1: uniform 
distribution, 2: normal distribution, 3: log-normal distribution, 4: uniform two nearby clusters, 5: uniform two 
faraway clusters, 6: uniform 3-cluster, 7: spherical surface in R3, 8: hemispherical surface in R3. All ERM models in 
(B, C) are adjusted to have a similar distribution of pairwise correlations (Appendix 1).

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 2. Comparisons of large eigenvalues across different smoothing interval sizes, ε. Rank plot 
(upper row) and pdf (lower row) of the covariance eigenspectrum for ERMs with different f(⃗x). (A) ϵ = 0.06. (B) 
ϵ = 0.12. (C) ϵ = 0.3. (D) ϵ = 0.6. Other ERM simulation parameters: N = 4096, ρ = 100, µ = 0.5, d = 2, L = 6.4, 
σ2

i = 1. The formulas for different f(⃗x)’s are listed in Table 3 in Methods.

Appendix 1—figure 3. Modifications of f(⃗x) near x = 0. The upper row illustrates the slow-decaying kernel 
function f(⃗x) (blue solid line) and its power-law asymptote (red dashed line) along a 1D slice at various f(⃗x). The 
lower row is similar to A, but on the log–log scale. The formulas for different f(⃗x)’s are listed in Table 3 in Methods.

RG approach
Here we briefly summarize the RG approach used in Meshulam et  al., 2019 and elucidate the 
adjustments required when applying the RG approach to ERM. The method consists of two stages: 
(i) iterative agglomerate clustering of neurons, and (ii) computing the spectrum of a block of the 
original covariance matrix corresponding to a cluster of the desired size based on the previous 
clustering result.

https://doi.org/10.7554/eLife.100666
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Stage (i): iterative clustering
We begin with N0 neurons, where N0 is assumed to be a power of 2. In the first iteration, we compute 
Pearson’s correlation coefficients for all neuron pairs. We then search greedily for the most correlated 
pairs and group the half pairs with the highest correlation into the first cluster; the remaining neurons 
form the second cluster. For each pair (a, b), we define a coarse-grained variable according to:

	 xk
i = Zk−1

ab (xk−1
a + xk−1

b ),� (S1)

where  Zk−1
ab  normalizes the average to ensure unit nonzero activity. This process reduces the number 

of neurons to N1 = N0/2. In subsequent iterations, we continue grouping the most correlated pairs 
of the coarse-grained neurons, iteratively reducing the number of neurons by half at each step. This 
process continues until the desired level of coarse-graining is achieved.

When applying the RG approach to ERM, instead of combining neural activity, we merge 
correlation matrices to traverse different scales. During the kth iteration, we compute the coarse-
grained covariance as:

	 ck
ij = ck−1

ab + ck−1
ac + ck−1

bc + ck−1
bd � (S2)

and the variance as:

	 ck
ii = ck−1

aa + ck−1
bb + 2ck−1

ab � (S3)

Following these calculations, we normalize the coarse-grained covariance matrix to ensure that 
all variances are equal to one. Note that these coarse-grained covariances are only used in stage (i) 
and not used to calculate the spectrum.

Stage (ii): eigenspectrum calculation
The calculation of eigenspectra at different scales proceeds through three sequential steps. First, 
for each cluster identified in stage (i), we compute the covariance matrix using the original firing 
rates of neurons within that cluster (not the coarse-grained activities). Second, we calculate the 
eigenspectrum for each cluster. Finally, we average these eigenspectra across all clusters at a given 
iteration level to obtain the representative eigenspectrum for that scale.

In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster 
sizes as described in Meshulam et al., 2019. Let N0 = 2n be the original number of neurons. To 
reduce it to size N = N0/2k = 2n−k, where k is the kth reduction step, consider the coarse-grained 
neurons in step n − k in stage (i). Each coarse-grained neuron is a cluster of 2n−k neurons. We then 
calculate spectrum of the block of the original covariance matrix corresponding to neurons of each 
cluster (there are 2k such blocks). Lastly, an average of these 2k spectra is computed.

For example, when reducing from N0 = 23 = 8 to N = 23−1 = 4 neurons (k = 1), we would have 
two clusters of four neurons each. We calculate the eigenspectrum for each 4 × 4 block of the 
original covariance matrix, then average these two spectra together. To better understand this 
process through a concrete example, consider a hypothetical scenario where a set of eight neurons, 
labeled 1,2,3,...,7,8, are subjected to a two-step clustering procedure. In the first step, neurons 
are grouped based on their maximum correlation pairs, for example, resulting in the formation of 
four pairs: {1, 2}, {3, 4}, {5, 6}, and {7, 8} (see Appendix 1—figure 4). Subsequently, the neurons are 
further grouped into two clusters based on the results of the RG step mentioned above. Specifically, 
if the correlation between the coarse-grained variables of the pair {1, 2} and the pair {3, 4} is found to 
be the largest among all other pairs of coarse-grained variables, the first group consists of neurons 
{1, 2, 3, 4}, while the second group contains neurons {5, 6, 7, 8}. Next, take the size of the cluster 
N = 4 for example. The eigenspectra of the covariance matrices of the four neurons within each 
cluster are computed. This results in two eigenspectra, one for each cluster. The correlation matrices 
used to compute the eigenspectra of different sizes do not involve coarse-grained neurons. It is the 
real neurons 1,2,3,...,7,8, but with expanding cluster sizes. Finally, the average of the eigenspectra 
of the two clusters is calculated.

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 4. Example of renormalization group (RG) approach for a set of eight neurons. The figure is 
adapted from Meshulam et al., 2019. The diagram illustrates the iterative clustering process for eight neurons. 
In each iteration, neurons are paired based on maximum correlation, with their activities combined through 
summation and normalized to maintain unit mean for nonzero values. Each neuron can only be paired once per 
iteration, ensuring all neurons are grouped by the iteration’s end.

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 6 continued on next page

Appendix 1—figure 5. Eigenspectra of renormalization group (RG)-inspired clustering, direct functional region 
sampling (FSap), and random sampling (RSap) in ERM. (A, D) RG clustered eigenspectra of ERM. The size of the 
cluster is denoted by N , which is the number of neurons in each cluster. We adopt the RG approach (Meshulam 
et al., 2018; Meshulam et al., 2019), but with a specific modification (Appendix 1). (B, E) Direct spatial sampling 
in the functional space (FSap) and the corresponding ERM eigenspectra. We began our analysis with a set of N0 
neurons distributed in the functional space. Initially, we chose N = N0/2 neurons that were located exclusively 
on one side of the x-axis of this space. We then proceeded to select N = N0/4 neurons from 4 quadrants. This 
sampling process was repeated iteratively, generating successively smaller subsets of neurons. (C, F) Random 

sampled (RSap) eigenspectra of ERM. ERM parameters: (A–C) Exponential function f(⃗x) = e−∥⃗x∥/b where b = 1, 
ρ = 10.24 and dimension d = 2. (D–F) Approximate power law Equation 11 with µ = 0.5, ρ = 10.24 and 
dimension d = 2. Other parameters are the same as Figure 3. The standard error of the mean (SEM) across the 
clusters is represented by the shaded area of each line.

Appendix 1—figure 6. Morrell et al.’s latent variable model. (A–D) Functional sampled (FSap) eigenspectra of 
the Morrell et al. model. (E–H) Random sampled (RSap) eigenspectra of the same model. Briefly, in Morrell et al.’s 
latent variable model (Morrell et al., 2024; Morrell et al., 2021), neural activity is driven by Nf  latent fields and a 
place field. The latent fields are modeled as Ornstein–Uhlenbeck processes with a time constant τ. The parameters 

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 6 continued
ε and η control the mean and variance of individual neurons’ firing rates, respectively. The following are the 
parameter values used. (A, E) Using the same parameters as in Morrell et al., 2021: Nf = 10, ϵ = −2.67, η = 6, 
τ = 0.1. Half of the cells are also coupled to the place field. (B–D, F–H) Using parameters from Morrell et al., 
2024: Nf = 5, ϵ = −3, η = 4. There is no place field. The time constant τ = 0.1, 1, 10 for (B, F, C, G) and (D, H), 
respectively.

Analyzing the effects of removing neural activity data during hunting
To identify and remove the time frames corresponding to putative hunting behaviors, the following 
procedure was used. The hunting interval was defined as 10 frames (1 s) preceding the onset of an 
eye convergence (see Methods) to 10 frames after the offset of this eye convergence. These frames 
were then excluded from the data before recalculating the covariance matrix (see Methods) and 
subsequently the sampled eigenspectra (Appendix 1—figure 7B, Appendix 1—figure 8B, D, F, H). 
As a control to the removal of the hunting frame, an equal number of time frames that are not within 
those hunting intervals were randomly selected and then removed and analyzed (Appendix 1—
figure 7C, Appendix  1—figure 8A, C, E, G). The number of hunting interval frames and total 
recording frames for five fish exhibiting hunting behaviors are as follows: fish 1 – 268/7495, fish 2 
– 565/9774, fish 3 – 2734/13,904, fish 4 – 843/7318, and fish 5 – 1066/7200. Fish 6 (number of time 
frames: 9388) was not exposed to a prey stimulus and, therefore, was excluded from the analysis.

To assess the impact of hunting removal on CI, we calculated the CI of the covariance matrix 
using all neurons recorded in each fish (without sampling to 1024 neurons). For the control case, 
we repeated the removal of the nonhunting frame 10 times to generate 10 covariance matrices and 
computed their CIs. We used a one-sample t-test to determine the level of statistical significance 
between the control CIs and the CI obtained after removal of the hunting frame.

Using fitted ERM parameters by full data, we performed a MDS on the control data and hunting-
removed data to infer the functional coordinates. Note that the functional coordinates inferred by 
MDS are not unique: rotations and translations give equivalent solutions. For visualization purposes 
(not needed for analysis), we first used the Umeyama algorithm to optimally align the functional 
coordinates of control and hunting-removed data.

To identify distinct clusters within the functional coordinates, we fit Gaussian Mixture Models 
(GMMs) using the ‘GaussianMixtures’ package in Julia. We chose the number of clusters K  based on 
giving the smallest Bayesian information criterion score. After fitting the GMMs, a list of probabilities 
pik, k = 1, 2, . . . , K  was given for each neuron i specifying the probability of the neuron belonging to 
the cluster k. The mean and covariance parameters were estimated for each Gaussian distributed 
cluster. For visualization (but not for analysis), a neuron was colored according to cluster k∗ where 
k∗ = arg max1≤k≤K pik.

We used the following method to measure the size of the cluster and its fold change. For a 2D 
(recall d = 2 in our ERM) Gaussian distributed cluster, let us consider an ellipse centered on its mean, 
and its axes are aligned with the eigenvectors of its covariance matrix C2×2. Let the eigenvalues 
of C be λ1,λ2. Then we set the length of the half-axis of the ellipse to be c

√
λi , respectively. Here, 

c > 0 is a constant determined below. Note that the ellipse axes correspond to linear combinations 
of 2D Gaussian random variables that are independent and λi’s are the variance of these linear 
combinations. From this fact, it is straightforward to show that the probability that a sample from 

the Gaussian cluster lies in the above ellipse depends only on c, that is, 1 − e−
c2
2 , and not on the 

shape of the cluster. So, the ellipse represents a region that covers a fixed proportion of neurons 
for any cluster, and its area can be used as a measure for the size of the Gaussian cluster. Note that 
the area of the ellipse is πc2√λ1λ2 = πc2√det(C). In Appendix 1—figure 9, we plot the ellipses to 
help visualize the clusters and their changes. We choose c such that the ellipse covers 95% of the 
probability (i.e., the fraction of neurons belonging to the cluster).

In the control functional map where we fit the GMMs, we directly calculated the size measure 
πc2√det(C) from the estimated covariance C for each Gaussian cluster. In the hunting-removed 
functional map, we needed to estimate the covariance C′ for neurons belonging to a cluster k under 
the new coordinates (we assume that the new distribution can still be approximated by a Gaussian 
distribution). We performed this estimation in a probabilistic manner to avoid issues of highly 
overlapping clusters where the cluster membership could be ambiguous for some neurons. First, we 
estimated the center/mean of the new Gaussian distribution by

https://doi.org/10.7554/eLife.100666
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(x̄, ȳ) :=
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i=1 pik
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i=1 pikyi∑N
i=1 pik

)
.
�

Here, the summation goes over all the N  neurons in the functional space and pik is the 
membership probability defined above, and 

(
xi, yi

)
 is the coordinate of neuron i in the hunting-

removed map. Similarly, we can use a weighted average to estimate the entries in the covariance 

matrix C′ =


C′

xx C′
xy

C′
yx C′
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. For example,

	
Ĉ′
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Then we calculated the size of the cluster on the new map as πc2
√

det(Ĉ′). Finally, we computed 

the fold change in size as 

√
det

(
Ĉ′

)

det(C) .

Appendix 1—figure 7. The effects of hunting behavior on scale invariance and functional space organization. 
Sampled covariance eigenspectra of the data from fish 1 calculated from control (A) and hunting removed (B) data 
. Ctrl: We randomly remove the same number of non-hunting frames. This process is repeated 10 times, and 
the mean ± SD of the CI is shown in the plot. Hunting removed: The time frames corresponding to the eye-
converged intervals (putative hunting state) are removed when calculating the covariance (Appendix 1). The CI 
for the hunting-removed data appears to be statistically smaller than in the control case (p-value = 1.5 × 10−9). 
(C) Functional space organization of control data. The neurons are clustered using the Gaussian Mixture Models 
(GMMs) and their cluster memberships are shown by the color. The color bar represents the proportion of neurons 
that belong to each cluster. (D) Similar to (C) but the functional coordinates are inferred from the hunting-removed 
data. The color code of each neuron is the same as that of the control data (C), which allows for a comparison of 
the changes to the clusters under the hunting-removed condition. See also the Movie S1. (E) Fold change in size/
area (Appendix 1) for each cluster (top; the gray dashed line represents a fold change of 1, i.e., no change in size) 
and the anatomical distribution of the most dispersed cluster (bottom).

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 8 continued on next page

Appendix 1—figure 8. Removing the time segment of hunting behavior does not obliterate the scale-invariant 
eigenspectra. Rows correspond to four light-field zebrafish data: fish 2 to fish 5 (results for fish 1 have been shown 
in Appendix 1—figure 7). (A, C, E, G) Ctrl: we randomly remove the same number of time frames that are not 
the putative hunting frames. We repeat this process 10 times to generate 10 control covariance matrices and the 
CI is represented by mean ± SD. (B, D, F, H) Hunting removed: data obtained by removing hunting frames from 
the full data (Appendix 1). The CI for the hunting removed data appears to be significantly smaller than that of the 

https://doi.org/10.7554/eLife.100666
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Appendix 1—figure 8 continued

control case (one-sample t-test p = 2.2 × 10−10 in fish 2, p = 4.6 × 10−9 in fish 3, p = 1.7 × 10−9 in fish 4, and 
p = 3.4 × 10−17 in fish 5).

Appendix 1—figure 9. Hunting behavior reorganizes neurons in the functional space (continued on next page). 
Rows correspond to five light-field recordings of zebrafish engaged in hunting behavior: fish 1 to fish 5. (A, D, 
G, J, M) (top) Functional space organization of the control data inferred by fitting the ERM and MDS (Result). 
Neurons are clustered using the Gaussian Mixture Models (GMMs) and their cluster memberships are shown by 
the color. The colorbar represents the proportion of neurons belonging to each cluster. (A, D, G, J, M) (bottom) 
The coordinate distribution of the cluster in control data which is most dispersed (i.e., largest fold change in 
size, see below) after hunting-removal. The transparency of the dots (colorbar) is proportional to the probability 
of the neurons belonging to this cluster (Appendix 1). The cyan ellipse serves as a visual aid for the cluster size: 
it encloses 95% of the neurons belonging to that cluster (Appendix 1). (B, E, H, K, N) (top) Similar to (A, D, G, 
J, M) (top) but the functional coordinates are inferred from the hunting-removed data. The color code of each 
neuron is the same as that in the control data, which allows for a comparison of the changes to the clusters under 
the hunting-removed condition. (B, E, H, K, N) (bottom) Similar to (A, D, G, J, M) (bottom) but the functional 
coordinates are inferred from the hunting-removed data. The transparency of each neuron is the same as in 
(A, D, G, J, M). (bottom), and it represents the probability pik (Appendix 1) of neurons belonging to the most 
dispersed cluster k in the control data. Likewise, the cyan ellipse encloses 95% of the neurons belonging to that 
cluster (Appendix 1). (C, F, I, L, O) Top, size/area fold change (Appendix 1) for each cluster (the gray dashed line 
represents a fold change of 1, i.e., no change in size); bottom, the anatomical distribution of the neurons in the 
most dispersed cluster.

https://doi.org/10.7554/eLife.100666
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Appendix 1—video 1. Neural activity patterns in anatomical and functional space during hunting (click here). 
Single-trial examples of fish 1 and fish 3. (A) Inferred firing rate activity in anatomical space. Scale bar, 100 µm. 
(B) Inferred firing rate activity in functional space. Functional space organization of the control data inferred by 
fitting the ERM and MDS in Result. The cyan ellipse serves as a visual aid for the cluster size: it encloses 95% of the 
neurons belonging to that cluster (Appendix 1). The inset illustrates the functional space organization, similar to 
that shown in Appendix 1—figure 7C. The colorbars in panels A and B depict the inferred activity magnitude of 
individual neurons. (C) Simultaneous behavior recording alongside the neural activity. Time, seconds.

https://​elifesciences.​org/​articles/​100666/​figures#​video1

https://doi.org/10.7554/eLife.100666
https://www.youtube.com/watch?v=sQ5uq_MiwDg
https://elifesciences.org/articles/100666/figures#video1
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Appendix 2
In this appendix, we elaborate upon the sketch introduced in the Methods, and present a full 
derivation of the covariance eigenspectrum of our ERM model. This section is organized as follows. 
First, we will briefly introduce the relationship between the eigenvalue probability density distribution 
and the resolvent. Second, we will turn the problem of calculating the resolvent to a calculation of 
the partition function using a field-theoretic representation and proceed to manipulate the partition 
function using the replica method. Third, we will introduce two approximate methods for calculating 
the partition function, leading to the high-density theory and the Gaussian variational method. We 
will discuss the implications and predictions of each method. Finally, we will discuss the relationship 
between the two methods and identify the parameter regime where the high-density theory agrees 
with the numerical simulation. Notation table: Appendix 2—table 1.

Resolvent
The eigenvalues λn of a Hermitian matrix C are real. Their probability density function or eigendensity 
is formally given by

	
p(λ) = 1

N

⟨ N∑
n=1

δ(λ− λn)

⟩
,
�

(S4)

where ⟨. . . ⟩ represents an average across different realizations of C. The eigendensity is connected 
with the resolvent (Mézard et al., 1999; Goetschy and Skipetrov, 2013),

	
g(z) = 1

N

⟨
Tr 1

z − C

⟩
= 1

N

⟨ N∑
n=1

1
z − λn

⟩
,
�

(S5)

we therefore compute the eigendensity using the standard inverse formula of Stieltjes tranform:

	
p(λ) = − 1

π
lim

η→0+
Im g(λ + iη)

�
(S6)

Field representation
In this section, we discuss a field-theoretical representation of the resolvent g(z). First, we rewrite 
Equation S5 as

	
g(z) = − 2

N
∂z

⟨
ln
[(

det(z − C)
)−1/2

]⟩
�

(S7)

The determinant 
(
det(z − C)

)−1/2 can be represented as a Gaussian integral

	
Ξ(z) =

(
det(z − C)

)−1/2 = i−N/2
ˆ +∞

−∞

dϕ1√
2π

... dϕN√
2π

exp
[
− i

2
ΦT(z − C)Φ

]
,
�

(S8)

where Φ = [ϕ1, . . . ,ϕN]T , and i ≡
√
−1.

	
lnΞ(z) = ln

ˆ +∞

−∞

dϕ1√
2π

... dϕN√
2π

exp
[
− i

2
ΦT(z − C)Φ

]
− iπN

4 �
(S9)

We thus establish a relationship between the resolvent and Ξ

	
g(z) = − 2

N
∂z ⟨lnΞ(z)⟩

�
(S10)

Note that the constant term in Equation S9 can be killed by ∂z and we will ignore it in the sequel. 
Equation S10 is the central formula in this note. Ξ(z) is also called the partition function in statistical 
physics. We endeavor to find a way to compute the average of lnΞ(z).

Recall that in our ERM model (Result Equation S2 and Figure 3A), the covariance between neuron 
i and neuron j is determined by the distance kernel function and their neural activity variances:

	 Cij = f(⃗xi − x⃗j)σiσj,� (S11)

https://doi.org/10.7554/eLife.100666
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where x⃗i are sampled from a uniform coordinate distribution p(⃗xi) = 1/V;σi are i.i.d. chosen from a 
probability density distribution p(σ) and are independent of the neuron coordinates x⃗i. The ⟨. . . ⟩ in 
Equation S10 is therefore an average over all possible x⃗i and σi. In order to compute ⟨lnΞ(z)⟩, we 
apply the replica method based on a smart use of the identity

	
ln x = lim

n→0

xn − 1
n �

Equation S10 now becomes

	
g(z) = − 2

N
∂z

[
lim
n→0

1
n
⟨
Ξn(z) − 1

⟩]
= − 2

N
∂z

[
lim
n→0

1
n

ln
⟨
Ξn(z)

⟩]

�
(S12)

The idea is to compute the right-hand side for finite and integer n and then perform the analytic 
continuation to n → 0.

Now we seek to determine the value of ⟨Ξn(z)⟩. It contains n copies (replicas) of the original system

	

⟨
Ξn(z)

⟩
= ( 1

2π
)
Nn
2
ˆ +∞

−∞
(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)

⟨
exp

[
− i

2

n∑
α=1

ΦαT(z − C)Φα

]⟩
.
�

(S13)

Writing it down explicitly, we have

	

⟨Ξn(z)⟩ = ( 1
2π

)
Nn
2
´ +∞
−∞(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)
´ L
−L

ddx⃗1
V

... ddx⃗N
V
´

p(σ1)dσ1...p(σN)dσN

exp

[
− zi

2
n∑

α=1

N∑
j=1

(ϕα
j )2 + i

2
n∑

α=1

N∑
j,k=1

ϕα
j ϕ

α
k f(⃗xj − x⃗k)σjσk

]

�

(S14)

In order to proceed further, we introduce the following auxiliary fields:

	
ψα (⃗x) =

N∑
j=1

ϕα
j δ(⃗x − x⃗j)

�
(S15)

Equation S15 can be represented as a following functional integral

	
1 =
ˆ +∞

−∞

n∏
α=1

D[ψα]δF[ψα (⃗x) −
N∑

j=1
ϕα

j δ(⃗x − x⃗j)]
�

(S16)

	
δF[ψ] =

ˆ +∞

−∞
D[ψ̂] exp[i

ˆ +∞

−∞
ddx⃗ψ(⃗x)ψ̂(⃗x)]

�
(S17)

or we can combine Equations S16 and S17 as

	

1 =
ˆ +∞

−∞

ˆ +∞

−∞

n∏
α=1

D[ψ̂α]D[ψα] exp


i
ˆ +∞

−∞
ddx⃗[ψα (⃗x) −

N∑
j=1

ϕα
j δ(⃗x − x⃗j)]ψ̂α (⃗x)



�

(S18)

Using Equation S15, we can write the term 1
2

N∑
j,k=1

ϕα
j ϕ

α
k f(⃗xj − x⃗k) in Equation S14 as

	

1
2

N∑
j,k=1

ϕα
j ϕ

α
k f(⃗xj − x⃗k) = 1

2

ˆ +∞

−∞
d⃗xd⃗x′f(⃗x − x⃗′)ψα (⃗x)ψα (⃗x′)

�
(S19)

We insert the relation Equations S18 and S19 into Equation S14,

https://doi.org/10.7554/eLife.100666
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⟨
Ξn(z)

⟩
= ( 1

2π
)
Nn
2
ˆ +∞

−∞
(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)
ˆ L

−L

ddx⃗1
V

... ddx⃗N
V

ˆ
p(σ1)dσ1...p(σN)dσN

exp


− zi

2

n∑
α=1

N∑
j=1

(ϕα
j )2 + i

2

n∑
α=1

N∑
j,k=1

ϕα
j ϕ

α
k f(⃗xj − x⃗k)σjσk




ˆ +∞

−∞

ˆ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp


i
ˆ +∞

−∞
ddx⃗(ψα (⃗x) −

N∑
j=1

ϕα
j δ(⃗x − x⃗j)σj)ψ̂α (⃗x)




= ( 1
2π

)
Nn
2
ˆ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α]
ˆ +∞

−∞
(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)

ˆ L

−L

ddx⃗1
V

... ddx⃗N
V

ˆ
p(σ1)dσ1...p(σN)dσN

exp


− zi

2

n∑
α=1

N∑
j=1

(ϕα
j )2 + i

2

n∑
α=1

N∑
j,k=1

ϕα
j ϕ

α
k f(⃗xj − x⃗k)σjσk




exp


i

n∑
α=1

ˆ +∞

−∞
ddx⃗(ψα (⃗x) −

N∑
j=1

ϕα
j δ(⃗x − x⃗j)σj)ψ̂α (⃗x)




= ( 1
2π

)
Nn
2
ˆ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp

[
i
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f(⃗x − x⃗′)ψα (⃗x)ψα (⃗x′)

]

ˆ +∞

−∞
(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)
ˆ L

−L

ddx⃗1
V

... ddx⃗N
V

ˆ
p(σ1)dσ1...p(σN)dσN

exp


− zi

2

n∑
α=1

N∑
j=1

(ϕα
j )2 + i

n∑
α=1

ˆ +∞

−∞
ddx⃗(ψα (⃗x) −

N∑
j=1

ϕα
j δ(⃗x − x⃗j)σj)ψ̂α (⃗x)




= ( 1
2π

)
Nn
2
ˆ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α] exp

[
i
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f(⃗x − x⃗′)ψα (⃗x)ψα (⃗x′)

]

exp

[
i

n∑
α=1

ˆ +∞

−∞
ddx⃗ψα (⃗x)ψ̂α (⃗x)

]

ˆ +∞

−∞
(dϕ1

1...dϕn
1)...(dϕ1

N...dϕn
N)
ˆ L

−L

ddx⃗1
V

... ddx⃗N
V

ˆ
p(σ1)dσ1...p(σN)dσN

exp


− zi

2

n∑
α=1

N∑
j=1

(ϕα
j )2 − i

n∑
α=1

ˆ +∞

−∞
ddx⃗

N∑
j=1

ϕα
j δ(⃗x − x⃗j)σjψ̂

α (⃗x)




�

(S20)

Integrating the last term in Equation S20

	

ˆ +∞

−∞
dϕ1

i ...dϕn
i

ˆ L

−L

ddri
V

ˆ
dσip(σi) exp

[
− zi

2

n∑
α=1

(ϕα
i )2 − i

n∑
α=1

ˆ +∞

−∞
ddrϕα

i δ(r − ri)σiψ̂
α(r)

]

=
ˆ L

−L

ddri
V

ˆ +∞

−∞
dϕ1

i ...dϕn
i

ˆ
dσip(σi) exp

[
− zi

2

n∑
α=1

(ϕα
i )2 − i

n∑
α=1

ϕα
i σiψ̂

α(ri)

]

= ( 2π
zi

)
n
2
ˆ L

−L

ddri
V

ˆ
dσip(σi) exp

[
i

2z

n∑
α=1

ψ̂α(ri)2σ2
i

]

= ( 2π
zi

)
n
2
ˆ L

−L

ddr
V

ˆ
dσp(σ) exp

[
i

2z

n∑
α=1

ψ̂α(r)2σ2
]

�

(S21)

so that ⟨Ξn(z)⟩ from Equation S14 can be written as

	

⟨
Ξn(z)

⟩
=
ˆ +∞

−∞

n∏
α=1

D[ψα]D[ψ̂α]ANeS0

� (S22)
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where A =

ˆ L

−L

ddx⃗
V

(zi)
−

n
2
ˆ

dσp(σ) exp

[
i

2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

�
(S23)

	
and S0 = i

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f(⃗x − x⃗′)ψα (⃗x)ψα (⃗x′) + i

n∑
α=1

ˆ +∞

−∞
ddx⃗ψα (⃗x)ψ̂α (⃗x)

�
(S24)

Integrating out the ψα in ⟨Ξn(z)⟩ Equations S22 and S24

	

ˆ +∞

−∞
D[ψα] exp

[
i
2

ˆ +∞

−∞
d⃗xd⃗x′f(⃗x − x⃗′)ψα (⃗x)ψα (⃗x′) + i

ˆ +∞

−∞
ddx⃗ψα (⃗x)ψ̂α (⃗x)

]

= (2πi)N/2(det f)−1/2 exp
[
− i

2

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

]

�

(S25)

Here, f −1 is the inverse kernel satisfying:

	

ˆ +∞

−∞
d⃗x′′f(⃗x − x⃗′′)f −1(⃗x′′ − x⃗′) = δ(⃗x − x⃗′)

�
(S26)

so that ⟨Ξn(z)⟩ can be written as

	

⟨
Ξn(z)

⟩
= (2πi)

Nn
2 (det f)−n/2

ˆ +∞

−∞
D[ψ̂α]eS1

�
(S27)

	
S1 = N ln A − i

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

�
(S28)

The constant term (2πi)
Nn
2  of ⟨Ξn(z)⟩ can be ignored because we should compute ∂z ⟨lnΞ(z)⟩ 

Equation S10 in the end.
To ensure the mathematical rigor in Equation S45, we next apply the Wick rotation 

ψα (⃗x) → ψα (⃗x)e−i π4  (Appendix 2).

	

⟨
Ξn(z)

⟩
= (det f)−n/2

ˆ +∞

−∞
D[ψ̂α]eS1

�
(S29)

	
S1 = N ln A − 1

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

�
(S30)

	
A =
ˆ L

−L

ddx⃗
V

(z)
−

n
2
ˆ

dσp(σ) exp

[
1
2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

�
(S31)

High-density expansion
In this section, we directly calculate the canonical partition function ⟨Ξn(z)⟩ in the z → ∞ limit by 
approximating the term N ln A (Equation S30) to a quadratic action, from which the partition function 
(Equation S29) would become a Gaussian integral.

Let us first calculate the AN  in z → ∞ limit

	

lim
z→∞

A ≈ (z)
−

n
2
ˆ

dσp(σ)

[
1 +
ˆ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

= (z)
−

n
2
[

1 +
ˆ

dσp(σ)σ2
ˆ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α (⃗x)2
]

= (z)
−

n
2
[

1 + E(σ2)
ˆ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α (⃗x)2
]

� (S32)
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lim
z→∞

AN = lim
z→∞

(z)
−

Nn
2

[
1 + NE(σ2)

ˆ L

−L

ddx⃗
V

1
2z

n∑
α=1

ψ̂α (⃗x)2
]

= lim
z→∞

(z)
−

Nn
2

[
1 + NE(σ2)

n∑
α=1

ˆ L

−L

ddx⃗
V

1
2z

ψ̂α (⃗x)2
]

≈ (z)
−

Nn
2 exp

[
E(σ2)

ˆ L

−L

ddx⃗
V

N
2z

n∑
α=1

ψ̂α (⃗x)2
]

�

(S33)

Now let us calculate ⟨Ξn(z)⟩ (Equation S29–S31) by letting L → ∞

	

⟨
Ξn(z)

⟩
= (det f)−n/2(z)

−
Nn
2
ˆ +∞

−∞
D[ψ̂α]eSh

�
(S34)

where the high-density quadratic action

	

Sh = E(σ2)
ˆ ∞

−∞

ddx⃗
V

N
2z

n∑
α=1

ψ̂α (⃗x)2 − 1
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

= −1
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′G−1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

�

(S35)

where G−1(⃗x − y⃗) = f −1(⃗x − y⃗) − NE(σ2)
Vz δ(⃗x − y⃗). Next, by integrating out the ψ̂ field, we find

	

⟨
Ξn(z)

⟩
= (det f)−n/2(z)

−
Nn
2
ˆ +∞

−∞
D[ψ̂α]eSh

= (zN det f det(G−1))−n/2
�

(S36)

Using Equation S12 that connects the partition function with the resolvent, we have

	

g(z) = − 2
N
∂z

[
lim
n→0

1
n

ln
(

(det(zfG−1))−n/2
)]

= V
N
∂z

ˆ +∞

−∞

ddk⃗
(2π)d ln

(
z − NE(σ2)̃f(⃗k)

V

)

= 1
ρ

ˆ +∞

−∞

ddk⃗
(2π)d

1
z − ρE(σ2)̃f(⃗k) �

(S37)

where f̃(⃗k) is the Fourier transform of f(⃗x).
Finally, the eigendensity p(λ) (Equation S6) is given by

	

p(λ) = − 1
π

lim
η→0+

Im(g(λ + iη))

= 1
ρ

ˆ +∞

−∞

ddk⃗
(2π)d δ(λ− ρE(σ2)̃f(⃗k))

= 1
ρE(σ2)

ˆ +∞

−∞

ddk⃗
(2π)d δ

(
λ

E(σ2)
− ρ̃f(⃗k)

)

�

(S38)

Derivation of power-law eigenspectrum in high-density limit
Here we calculate the eigendensity of our model, with the kernel function f(⃗x) (Table 3). The Equation 
S38 (set E(σ2) = 1 as in Result) can be written as:

	
p(λ) =

Sd−1
(2π)d

∥⃗k0∥d−1

ρ2|̃f′ (⃗k0)|
, ∥⃗k0∥ = f̃ −1(λ

ρ
)
� (S39)
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where Sd−1 is the surface area of d − 1 dimensional sphere. Here, we consider the approximation 
f(⃗x) ≈ ϵµ∥⃗x∥−µ, whose Fourier transform and its derivative are ̃f(⃗k) = c0∥⃗k∥−(d−µ), ̃f′ (⃗k) = c1∥⃗k∥−(d−µ+1) 

and ∥k0∥ = f̃−1(λρ ) = ( λ
c0ρ

)−
1

d−µ. The constants are given by c0 = 2d−µπ
d
2 ϵµ

Γ( d−µ
2 )

Γ( µ2 ) = ϵµc2, 
c1 = −(d − µ)c0, c2 = 2d−µπ

d
2
Γ( d−µ

2 )
Γ( µ2 )

	

p(λ) =
Sd−1
(2π)d

∥⃗k0∥d−1

ρ2|̃f′ (⃗k0)|
=

Sd−1
(2π)d

∥⃗k0∥2d−µ

ρ2|c1|

=
Sd−1
(2π)d

c

d
d − µ
0

ρ2(d − µ)
(λ
ρ

)
−

2d − µ

d − µ =
Sd−1
(2π)d

c

d
d − µ
2
d − µ

λ
−

2d − µ

d − µ (ρϵd)
µ

d − µ
�

(S40)

Derivation of eigenspectrum with exponential kernel function in high-den-
sity limit
Here we consider the exponential kernel function f(⃗x) = e−b∥⃗x∥, whose Fourier transform and 

its derivative are f̃(⃗k) = c1

(b2+∥⃗k∥2)
d+1

2
, f̃′ (⃗k) = − (d+1)⃗kc1

(b2+∥⃗k∥2)−
d+3

2
 and ∥k0∥ = f̃−1(λρ ) =

√
( c1ρ
λ )

2
d+1 − b2 , 

∥k0∥2 + b2 = ( c1ρ
λ )

2
d+1, where c1 = 2dπ

d−1
2 bΓ( d+1

2 )

	

p(λ) =
Sd−1
(2π)d

���⃗k0

���
d−1

ρ2
���̃f′

(⃗
k0

)���
=

Sd−1
(2π)d

(
b2 +

���⃗k0

���
2
)−

d + 3
2 ���⃗k0

���
d−1

ρ2
���(d + 1)⃗k0c1

���

=
Sd−1
(2π)d

( c1ρ

λ

)−
d + 3
d + 1

���⃗k0

���
d−2

(d + 1)ρ2
��c1

�� =
Sd−1

(d + 1)(2π)d c

2
d + 1
1 ρ

−d + 1
d + 1 λ

−
d + 3
d + 1

���⃗k0

���
d−2

=
Sd−1

(d + 1)(2π)d 2
2d

d + 1 π

d − 1
d + 1 Γ

(
d + 1

2

) 2
d + 1 (

ρb−d
)−d + 1

d + 1

λ
−

d + 3
d + 1







2dπ

d − 1
2 Γ

(
d + 1

2

)
ρb−d

λ




2
d + 1

− 1




d − 2
2

�

(S41)

It is straightforward to see that this spectrum is not scale invariant. For example, when d = 2, the 

above expression reduces to a perfect power-law spectrum p(λ) ∼ ρ
−d+1

d+1 λ−
d+3
d+1, which changes with 

scale over sampling.

Variational approximation
To find a general approximation for the eigenspectrum that goes beyond the high-density limit, we 
use Gaussian variational approximation in the field representation, namely by looking for the best 
quadratic action Sv,

	
Sv = −1

2

n∑
αβ

ˆ +∞

−∞
d⃗xd⃗x′G−1

αβ (⃗x − x⃗′)ψ̂α (⃗x)ψ̂β (⃗x′),
�

(S42)

to approximate the action S1 in the partition function (Equations S29–S31). This enables us to 
represent the partition function by a Gaussian integral, which can be evaluated analytically. We find 
the best quadratic action Sv by minimizing the difference between S1 and Sv, which is defined as KL 
divergence between two distributions that are proportional to eS1 and eSv.

In this section, we will proceed by using the grand canonical ensemble formulation, namely the 
average in Equation S4, instead of using a fixed covariance matrix size N , which is now carried out 
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across all different sizes. If N  follows a Poisson distribution, it is easy to show (Appendix 2) that the 
grand canonical partition function is given by Equation S116:

	
Z =

∑
N

⟨Ξn
N(z)⟩aN

N!
,
�

where a = ⟨N⟩. As a result, the new action S1 becomes

	
S1 = NA − 1

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′).

�
(S43)

Here and below, N  should be viewed as the average matrix size. The resolvent g(z) in Equation 
S12 can be similarly generalized to Equation S117,

	
g(z) = lim

n→0
− 2

Nn
∂z lnZ

�

As in statistical physics, we define the free energy as

	
F1 = − lnZ = − ln

ˆ +∞

−∞
D[ψ̂α]eS1

�
(S44)

We shall define the variational free energy Fv such that it would approximate the true free energy 
F1 by minimizing DKL(Pv||P1),

	 Fv = DKL(Pv||P1) + F1 � (S45)

where

	
P1 = eS1

´ +∞
−∞ D[ψ̂α]eS1 �

(S46)

	
Pv = eSv

´ +∞
−∞ D[ψ̂α]eSv �

(S47)

The KL divergence DKL(Pv||P1) is always nonnegative and the free energy F1 is independent of 
the quadratic action Sv. Therefore, we need to minimize the variational free energy Fv. Let us now 
examine the variational free energy Fv

	

Fv =DKL(Pv||P1) + F1

= 1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv ln Pv

P1
− lnZ

= 1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv (Sv − S1 − ln

ˆ +∞

−∞
D[ψ̂α]eSv + ln

ˆ +∞

−∞
D[ψ̂α]eS1 ) − lnZ

= 1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv (Sv − S1) − ln Zv

�

(S48)

Here Zv is the normalization factor

	
Zv =

ˆ +∞

−∞
D[ψ̂α]eSv

�
(S49)

Since we want to minimize Fv, the constant term
 

	

1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv Sv = const

� (S50)
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can beignored, and Equation S48 is reduced to

	
Fv = − 1

Zv

ˆ +∞

−∞
D[ψ̂α]eSv S1 − ln Zv

�
(S51)

To simplify the formula, let us introduce S2

	
S2 = −1

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

�
(S52)

and rewrite Equation S51 as

	
Fv = − 1

Zv

ˆ +∞

−∞
D[ψ̂α]eSv S2 −

1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv NA − ln Zv

�
(S53)

Next, we will compute each term in the variational free energy Fv First, we calculate the third term 
ln Zv in Equation S53 by Equations S42 and S49

	

ln Zv = ln


∏

α,β
(2π)N/2(det(G−1

αβ))
−

1
2




=
∑
α,β

1
2

ln det(Gαβ) + n2N
2

ln(2π)
�

(S54)

Second, we calculate the first term 1
Zv

´ +∞
−∞ D[ψ̂α]eSv S2 in Equation S53

	

1
Zv

ˆ ∞

−∞
D[ψ̂α]eSv S2 = 1

Zv
lim
h→0

∂

∂h

ˆ ∞

−∞
D[ψ̂α]eSv+hS2

= 1
Zv

lim
h→0

∂

∂h
∏
α=β

[
det(G−1

αβ + hf −1)
]−1

2
∏
α ̸=β

[
det(G−1

αβ)
]−1

2

= lim
h→0

∂

∂h
∏
α

[
det(I + hf −1Gαα)

]−1
2

=
n∑
α

∂

∂h
lim
h→0

(
1 − h

2
Tr(f −1Gαα)

)

= −
n∑
α

1
2

Tr(f −1Gαα)
�

(S55)

Third, we calculate the second term 1
Zv

´ +∞
−∞ D[ψ̂α]eSv NA in Equation S53, recall the term A 

(Equation S31)

	
A =
ˆ L

−L

ddx⃗
V

(z)
−

n
2
ˆ

dσp(σ) exp

[
1
2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

�
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1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv NA

= N(z)
−

n
2

Zv

ˆ
dσp(σ)

ˆ +∞

−∞
D[ψ̂α]eSv

ˆ L

−L

ddx⃗
V

exp

[
1
2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

= N(z)
−

n
2

Zv

ˆ
dσp(σ)

ˆ L

−L

ddx⃗0
V

ˆ +∞

−∞
D[ψ̂α] exp

[
Sv + 1

2z

n∑
α=1

ψ̂α (⃗x)2σ2
]

= N(z)
−

n
2

Zv

ˆ
dσp(σ)

ˆ L

−L

ddx⃗0
V

∏
α,β

[
det(Kαβ)

]1
2

=N(z)
−

n
2
ˆ

dσp(σ)
ˆ L

−L

ddx⃗0
V

∏
α,β

[
det(KαβG−1

αβ)
]1

2
�

(S56)

where

	

Sv + 1
2z

n∑
α=1

ψ̂α (⃗x)2σ2 = −1
2

n∑
αβ

ˆ +∞

−∞
d⃗xd⃗x′G−1

αβ (⃗x − x⃗′)ψ̂α (⃗x)ψ̂β (⃗x′) + 1
2z

n∑
α=1

ψ̂α (⃗x)2σ2

= −1
2

n∑
αβ

ˆ +∞

−∞
d⃗xd⃗x′K−1

αβ (⃗x − x⃗′)ψ̂α (⃗x)ψ̂β (⃗x′)
�

(S57)

	
K−1
αβ (⃗x, y⃗) = G−1

αβ (⃗x, y⃗) − σ2

z
δαβδ(⃗x − x⃗o)δ(⃗y − x⃗0)

�

	
det(K−1

αβGαβ) = 1 − σ2

z
δαβG(⃗x0, x⃗0)

�
(S58)

	

1
Zv

ˆ +∞

−∞
D[ψ̂α]eSv NA = N(z)

−
n
2
ˆ

dσp(σ)
ˆ L

−L

ddx⃗0
V

∏
α,β

[
det(K−1

αβGαβ)
]−1

2

= N(z)
−

n
2
ˆ

dσp(σ)
ˆ L

−L

ddx⃗0
V

∏
α

[
det(K−1

ααGαα)
]−1

2

= N(z)
−

n
2
ˆ

dσp(σ)
ˆ L

−L

ddx⃗0
V

∏
α

(1 − σ2

z
Gαα (⃗x0, x⃗0))

−
1
2

= N(z)
−

n
2
ˆ

dσp(σ)
∏
α

(1 − σ2

z
Gαα(0))

−
1
2

= N(z)
−

n
2
ˆ

dσp(σ) exp(−1
2

Trn ln(1 − σ2

z

ˆ
ddk⃗

(2π)d G̃(⃗k)))
�

(S59)

In sum, the variational free energy Fv is equal to

	

Fv =
∑
α

1
2

Tr(f −1Gαα) −
∑
α,β

1
2

ln(det(Gαβ))

− N(z)
−

n
2
ˆ

dσp(σ) exp(−1
2

Trn ln(1 − σ2

z

ˆ
ddk⃗

(2π)d G̃(⃗k)))

=
∑
α

V
2

ˆ
ddk⃗

(2π)d
G̃(⃗k)
f̃(⃗k)

− V
2

ˆ
ddk⃗

(2π)d

∑
α,β

ln(G̃αβ (⃗k))

− N(z)
−

n
2
ˆ

dσp(σ) exp(−1
2

Trn ln(1 − σ2

z

ˆ
ddk⃗

(2π)d G̃(⃗k)))
� (S60)
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Now let us find the best quadratic action Sv that minimizes the variational free energy Fv

	

δFv

δG̃αβ

= 0
�

(S61)

The solution of Equation S61 is given by

	 G̃−1
αβ (⃗k) = δαβG̃−1(⃗k)� (S62)

	

1
f̃(⃗k)

−
ˆ

dσp(σ) ρσ2

z − σ2
´

D⃗k G̃(⃗k)
− 1

G̃(⃗k)
= 0

�
(S63)

where 
´

D⃗k ≡
´ dd⃗k

(2π)d . By using Equation S117, we finally obtain

	
g(z) = lim

n→0

2
nN

∂

∂z
F1 ≈ lim

n→0

2
nN

∂

∂z
Fv =

ˆ
dσp(σ) 1

z − σ2
´

D⃗k G̃(⃗k)�
(S64)

Scale invariance of the covariance spectrum in the Gaussian variational 
Model
In Result, we point to two factors that contribute to the scale invariance of eigenspectrum using the 
high-density theory. In this section, we show that the same conclusion can be drawn by using the 
Gaussian variational method. Furthermore, we examine how the heterogeneity of neural activity 
influences the eigendensity calculated by the Gaussian variational model. We show that ∂p(λ)

∂ρ , which 
characterizes the change of eigendensity due to sampling in the functional space, decreases with 
the heterogeneity of neural activity described by higher-order moment of neural activity variance, 
for example, E(σ4).

Let us rewrite Equation S63 as

	

G =
ˆ

D⃗k G̃(⃗k) =
ˆ

D⃗k f̃(⃗k)
1 − M(z)̃f(⃗k)

M(z) =
ˆ

dσp(σ) ρσ2

z − σ2G(z)�

(S65)

To present a formal expression for the eigendensity, let us define Re(G) ≡ gr, Im(G) ≡ gi. From 
Equations S6 and S64, we find

	
p(λ, ρ) = 1

π

⟨
σ2gi

(λ− σ2gr)2 + σ4g2
i

⟩

σ

,
�

(S66)

where ⟨...⟩σ =
´

...p(σ)dσ.
A direct computation of Equation S66, however, remains difficult: the complication arises from 

the complex function M(z) in Equation S65, which in turn is an integral function of G. To streamline 
the calculation, let us further define Re(M) ≡ ρa, Im(M) ≡ ρb. Writing it down explicitly, we have

	
a =

⟨
σ2(λ− σ2gr)

(λ− σ2gr)2 + σ4g2
i

⟩

σ�
(S67)

	
b =

⟨
σ4gi

(λ− σ2gr)2 + σ4g2
i

⟩

σ�
(S68)

The real and imaginary part of G can now be expressed as functions of a and b. Integrating 
Equation S65 in the spherical coordinates, we have
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gr(ρ) =
Sd−1
(2π)d

ˆ π/ϵ

π/L
dkkd−1 f̃(k)[1 − ρãf(k)]

[1 − ρãf(k)]2 + ρ2b2̃f 2(k)

gi(ρ) =
Sd−1
(2π)d

ˆ π/ϵ

π/L
dkkd−1 ρb̃f 2(k)

[1 − ρãf(k)]2 + ρ2b2̃f 2(k)�

(S69)

where for clarity, we have abused the notation a bit by defining k = ∥⃗k∥; Sd−1 is the surface area of 
unit d-ball in the momentum space. In order to evaluate the integrals analytically, we introduce an 
ultraviolet cutoff π/ϵ. Numerically, whether integrating up to π/ϵ or greater than this bound shows 
little difference.

Numerical solution of the Gaussian variational method
With Equations S66–S69, we numerically calculate the eigendensity iteratively from the following 
steps:

•	 Step 1: set the initial values of a and b as a0 = 1, b0 = 1
•	 Step 2: solve for a in Equation S67 with fixed b
•	 Step 3: solve for b in Equation S68 with fixed a
•	 Step 4: iterate Steps 2 and 3 10 times
•	 Step 5: calculate p(λ) using Equation S66

Note that we plug Equation S69 into Equations S67 and S68 in step 2–3.

Two contributing factors on the scale invariance
We next derive an analytical expression for Equation S69 by considering the approximate power 
law kernel function f(⃗x) ≈ ϵµ∥⃗x∥−µ, µ > 0, from which the high-density theory results on the scale 
invariance can be extended.

By a change of variable x = f̃(k) ∼ ϵµk−(d−µ), and let xϵ ≡ f̃(πϵ ), xL ≡ f̃(πL ), we have

	
gi(ρ) ∼ ϵ

µd
d − µ

d − µ

ˆ xL

xϵ
dx ρbx

−
µ

d − µ

[1 − ρax]2 + ρ2b2x2 ,
�

(S70)

where ∼ indicates that all constant numerical factors (e.g., π and Γ(d/2)) are ignored. To compute 
Equation S70, we perform a branch cut at [0,∞], and perform a contour integral on the complex 
plane following the path in , Appendix 2—figure 1A. When 0 < β = 1 − µ

d−µ < 2, the integral on the 
large circle ΓR and the small circle Γϵ goes to zero as xL → ∞, xϵ → 0, leaving only two simple poles 
(zeros of the function in the denominator) in the complex plane. By applying the residue theorem, 
we find an expression for gi in the limit L → ∞, ϵ → 0

	

cos θ = − a√
a2 + b2

β = d − 2µ
d − µ

gi ∼ − ϵ

µd
d − µ

d − µ

sin(β − 1)θ
sin θ sinπβ

πbρ1−β

(a2 + b2)β/2 �

(S71)

The analytical expression for gr is a bit more involving.

	
gr(ρ) ∼ ϵ

µd
d − µ

d − µ

ˆ xL

xϵ
dx x

−
d

d − µ

[1 − ρax]2 + ρ2b2x2 − a
b

gi
�

(S72)

It has two terms, the second term is similar to Equation S70; the first term, however, diverges as 
xϵ → 0. Thus, the radius of the small circle Γϵ in Appendix 2—figure 1 cannot shrink to zero: this is 
precisely the requirement of an ultraviolet cutoff in the wave vector k⃗ . The contour integral on the 
large circle ΓR, on the other hand, goes to zero as xL → ∞. Thus, the integral on Γϵ contributes to 
the final result. By considering leading order term of xϵ for finite but small xϵ, we find

https://doi.org/10.7554/eLife.100666
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cos θ = − a√
a2 + b2

γ = −µ

d − µ

gr ∼ − ϵ

µd
d − µ

d − µ

xγϵ
γ

− ϵ

µd
d − µ

d − µ

sin(γ − 1)θ
sin θ sinπγ

πρ−γ

(a2 + b2)γ/2 − a
b

gi
�

(S73)

Recall xϵ ∼ ϵµ

(π/ϵ)d−µ , and we find that the first term in gr is proportional to πµ/µ, independent of ε.

Appendix 2—figure 1. Calculate gi and gr. (A) The path of the contour integral for gi, gr (Equation S70). The 
heatmap of gr and gi with respect to λ and ρ, gr in (B, C) are calculated by the numerical method (Methods). The 
parameters are N = 1024, ρ = 10.24, d = 2, L = 10, µ = 0.5, ϵ = 0.03125 is i.i.d. sampled from a log-normal 
distribution with zero mean and a standard deviation of 0.5 in the natural logarithm of the σ2

i  values; we also 
normalize E(σ2

i ) = 1.

According to Equation S71 and S73, one can immediately see that as µ/d → 0, the ρ-dependence 
relationship vanishes for gr and gi. We therefore conclude that a slower power-law decay in the 
kernel function and/or a higher dimension of the functional space are two contributing factors for 
the scale invariance of the covariance spectrum.

Heterogeneity of neural activity across neurons enhances scale invariance
Next, we take a more close look at how the eigendensity changes with ρ for finite but small µ/d and 
when λ ≫ 1. Using Equation S66, we have

	

∂p
∂ρ

= 1
π

⟨
∂gi
∂ρ

σ2
[
(λ− σ2gr)2 + σ4g2

i

]
− 2σ6g2

i
[
(λ− σ2gr)2 + σ4g2

i
]2 + ∂gr

∂ρ

2σ4gi(λ− σ2gr)[
(λ− σ2gr)2 + σ4g2

i
]2

⟩

σ�
(S74)

From numerical calculation, we find that typically gr ≫ gi, so one can use the approximation

	

∂p
∂ρ

≈ 1
π

⟨
∂gi
∂ρ

σ2

(λ− σ2gr)2 + σ4g2
i

⟩

σ

+ 1
π

⟨
∂gr
∂ρ

2σ4gi
(λ− σ2gr)3

⟩

σ�
(S75)

Recall Equation S66

	
p(λ, ρ) = 1

π

⟨
σ2gi

(λ− σ2gr)2 + σ4g2
i

⟩

σ

,
�

(S76)

Since p(λ, ρ) is very small for large λ, a more appropriate measure is to examine

	

∂ log p
∂ρ

≡ 1
p
∂p
∂ρ

≈ ∂gi
∂ρ

1
gi

+ 2∂gr
∂ρ

⟨
σ4

(λ− σ2gr)3

⟩

σ⟨
σ2

(λ− σ2gr)2

⟩

σ � (S77)
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Considering the large eigenvalue case λ ≫ σ2gr (the numerical value of gr is on the order of 1), 
we perform Taylor expansion and arrive at

	

⟨
σ2

(λ− σ2gr)2

⟩

σ

≈

⟨
σ2

λ2 + 2σ4gr
λ3 + 3σ6g2

r
λ4

⟩

σ�
(S78)

	

⟨
σ4

(λ− σ2gr)3

⟩

σ

≈

⟨
σ4

λ3 + 3σ6gr
λ4

⟩

σ�
(S79)

Note ⟨σ2⟩σ ≡ E(σ2) is normalized to 1.

	

∂ log p
∂ρ

≈ ∂gi
∂ρ

1
gi

+ 2∂gr
∂ρ

⟨
σ4

(λ− σ2gr)3

⟩

σ⟨
σ2

(λ− σ2gr)2

⟩

σ

≈ ∂gi
∂ρ

1
gi

+ 2∂gr
∂ρ

⟨
σ4

⟩
σ

+ 3gr
λ

⟨
σ6

⟩
σ

λ + 2gr
⟨
σ4

⟩
σ

+ 3g2
r

λ

⟨
σ6

⟩
σ �

(S80)

By examining Equations S71 and S73, we find that when λ ≫ gr, a ≫ b, θ ≈ π, gr decays weakly 
with ρ while gi increases weakly with ρ (also confirmed by numerical calculation, Figure 1B, C)

	

∂gr
∂ρ

< 0, ∂gi
∂ρ

> 0.
�

It is therefore straightforward to see from 80 that the higher-order moment (e.g., E(σ4)) in the 
activity variance contributes to reducing the ρ-dependence in the eigendensity function.

The relationship between CI and eigendensity
In this section, we show how the CI introduced in Methods is related to Equation S80, namely how 
the eigendensity changes with the neuronal density in the functional space. Recall the definition of 
CI in Equation S13:

	
CI := 1

log(q0/q1)

ˆ log q0

log q1

∣∣∣∣
∂ logλ(q)
∂ log ρ

∣∣∣∣ d log q
�

where

	
q(λ) =

ˆ ∞

λ
p(λ)dλ

�

we used implicit differentiation to compute ∂ log λ(q)
∂ log ρ . For clarity, we write the function q(λ, ρ) explicitly 

involving λ and ρ as Q(λ, ρ) in Equations S81–S83.

	 F(λ(q, ρ), q, ρ) = Q(λ(q, ρ), ρ) − q ≡ 0� (S81)

	

dF(λ(q, ρ), q, ρ)
dρ

= ∂F(λ(q, ρ), q, ρ)
∂ρ

+ ∂F(λ(q, ρ), q, ρ)
∂λ

∂λ(q, ρ)
∂ρ

= 0
�

(S82)

	

∂λ(q, ρ)
∂ρ

= −

∂F(λ(q, ρ), q, ρ)
∂ρ

∂F(λ(q, ρ), q, ρ)
∂λ

= −

∂Q(λ(q, ρ), ρ)
∂ρ

∂Q(λ(q, ρ), ρ)
∂λ � (S83)

Now we can write CI as

https://doi.org/10.7554/eLife.100666
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∂ logλ(q, ρ)
∂ log ρ

= ρ

λ(q, ρ)
∂λ(q, ρ)

∂ρ
= − ρ

λ(q, ρ)

∂q(ρ,λ)
∂ρ

∂q(ρ,λ)
∂λ �

(S84)

from which we arrive at Equation S15 in Methods:

	

CI = 1
log(q0/q1)

ˆ log q0

log q1

∣∣∣∣
∂ logλ(q, ρ)

∂ log ρ

∣∣∣∣ d log q = 1
log(q0/q1)

ˆ q0

q1
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− ρ

qλ

∂q
∂ρ
∂q
∂λ

∣∣∣∣∣∣∣∣
dq

= 1
log(q0/q1)

ˆ λ(q0)

λ(q1)

∣∣∣∣∣∣∣∣
− ρ

qλ

∂q
∂ρ
∂q
∂λ

∣∣∣∣∣∣∣∣
∂q
∂λ

dλ = 1
log(q0/q1)

ˆ λ(q1)

λ(q0)

∣∣∣∣
ρ

qλ
∂q
∂ρ

∣∣∣∣ dλ

�

(S85)

Finally, we can rewrite CI as a function of ∂p
∂ρ using a double integral:

	

CI = 1
log(q0/q1)

ˆ λ(q1)

λ(q0)

∣∣∣∣
ρ

qλ
∂q
∂ρ

∣∣∣∣ dλ = 1
log(q0/q1)

ˆ λ(q1)

λ(q0)
dλ1

∣∣∣∣
ρ

qλ1

ˆ ∞

λ1

dλ2
∂p(λ2)
∂ρ

∣∣∣∣

= 1
log(q0/q1)

ˆ λ(q1)

λ(q0)

1
λ1

dλ1

∣∣∣∣∣∣∣∣

´∞
λ1

dλ2p(λ2)∂ ln p(λ2)
∂ ln ρ´∞

λ1
dλ2p(λ2)

∣∣∣∣∣∣∣∣
�

(S86)

Compare high-density theory and Gaussian variational method
This section aims to determine the conditions under which the high-density approximation aligns 
with the simulation results. To this end, we begin by comparing the kernel operator G̃h (⃗k) in the high-
density quadratic action and G̃v (⃗k) in the variational approximation. We identify the condition when 
high-density theory would agree with the variational method as well as the numerical simulation, 

namely z ≫
´ dd⃗k

(2π)d G̃v (⃗k). Secondly, we give a precise re-derivation of the high-density result by 
incorporating this condition into the variational approximation. Finally, we substitute 

´ dd⃗k
(2π)d G̃v (⃗k) 

with 
´ dd⃗k

(2π)d G̃h (⃗k) and estimate the parameter regime where the high-density theory would agree 
with numerical simulation. This analysis yields a deeper understanding of the relationship between 
high-density theory and variational method, and how they relate to simulation results.

A simple comparison of the two methods
For the sake of simplicity, we consider the correlation matrix with p(σ) = δ(σ − 1) in this section. 
Returning to the explicit result Equation S29–S31 ,

	

⟨
Ξn(z)

⟩
= (det f)−n/2(z)

−
Nn
2
ˆ +∞

−∞
D[ψ̂α]eS1

�
(S87)

In the high-density approximation (Equation S35)

	

Sh =
ˆ L

−L

ddx⃗
V

N
2z

n∑
α=1

ψ̂α (⃗x)2 − 1
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

= −1
2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′G−1

h (⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)
�

(S88)

Here, we introduce Gh as the kernel operator in the high-density quadratic action.

	
G−1

h (⃗x − y⃗) = f −1(⃗x − y⃗) − N
Vz

δ(⃗x − y⃗)
� (S89)

Fourier transform of Gh leads to

https://doi.org/10.7554/eLife.100666
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G̃h (⃗k) = f̃(⃗k)
1 − ρ

z
f̃(⃗k)

�
(S90)

In the variational method Equation S63, we have

	

G̃v (⃗k) = f̃(⃗k)
1 − C̃f(⃗k)

, C = ρ

z −
´ ddk⃗

(2π)d G̃v (⃗k)
,

�

(S91)

where we introduce Gv as the kernel operator in the variational quadratic action. Clearly, the 
condition that G̃v (⃗k) approaches G̃h (⃗k) is given by

	
C → ρ

z
, z ≫

ˆ
ddk⃗

(2π)d G̃v (⃗k)
�

The function ratiov(z) is defined as:

	
ratiov(z) = 1

z

ˆ
ddk⃗

(2π)d G̃v (⃗k)
�

As ratiov(z) approaches 0, G̃v (⃗k) becomes identical to G̃h (⃗k). Note that G̃v (⃗k) is difficult to compute; 

instead, we can compute and analyze 
´ dd⃗k

(2π)d G̃h (⃗k) (see Appendix 2)

	
ratioh(z) = 1

z

ˆ
ddk⃗

(2π)d G̃h (⃗k)
�

(S92)

A re-derivation of the high-density result using the grand canonical 
ensemble
In this section, we re-derive the high-density result from the grand canonical ensemble and the 
variational method. The derivation also allows us to reproduce the approximation condition 
discussed in the previous section.

Let us recall the calculation of the free energy Fv (Equation S60) in the variational approximation 
with p(σ) = δ(σ − 1)

	

Fv = V
2

Trn

ˆ
ddk⃗

(2π)d
G̃(⃗k)
f̃(⃗k)

− N(z)
−

n
2 exp(−1

2
Trn log(1 − 1

z
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− V
2
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ddk⃗

(2π)d

∑
α,β

log(G̃αβ (⃗k))

= Vn
2

ˆ
ddk⃗

(2π)d
G̃(⃗k)
f̃(⃗k)

− N(z)
−

n
2
[

1 − 1
z

ˆ
ddk⃗

(2π)d G̃(⃗k)

]−n
2
− Vn

2

ˆ
ddk⃗

(2π)d log G̃(⃗k)
�

(S93)

	
lim
n→0

Fv = Vn
2

ˆ
ddk⃗

(2π)d
G̃(⃗k)
f̃(⃗k)

+ Nn
2

log

[
z −
ˆ

ddk⃗
(2π)d G̃(⃗k)

]
− Vn

2

ˆ
ddk⃗

(2π)d log G̃(⃗k) + N
�

(S94)

Following Equations S61 and S63:

	
δFv

δG̃
= 0

�
(S95)

	

1
f̃(⃗k)

− ρ

z −
´ ddk⃗

(2π)d G̃(⃗k)
− 1

G̃(⃗k)
= 0

� (S96)
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g(z) = lim
n→0

2
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d
dz
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2
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d
dz
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n→0

2
nN

( ∂
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∂

∂z
Fv = 1
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(2π)d G̃(⃗k)
�

(S97)

We can perform the same calculation in the high-density theory by considering the limit 

ratiov(z) = 1
z
´ dd⃗k

(2π)d G̃v (⃗k) → 0:
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Therefore, we can define the free energy Fh in the high-density theory as

	
Fh = Vn

2

ˆ
ddk⃗

(2π)d
G̃(⃗k)
f̃(⃗k)

+ Nn
2

log(z) − Nn
2

1
z

ˆ
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ˆ
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(S99)

 

then

	
δFh
δG̃

= 0
�

(S100)

	

1
f̃(⃗k)

− ρ

z
− 1

G̃(⃗k)
= 0

�
(S101)

This is precisely Equation S90 derived in the previous section.

	

g(z) ≈ lim
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1
ρ

ˆ
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z − ρ̃f(⃗k)

+
ˆ

ddk⃗
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]

= 1
ρ

ˆ
ddk⃗

(2π)d
1

z − ρ̃f(⃗k) �

(S102)

which is the resolvent of high-density approximation (Equation S37).

Explicit expression for the integral
In this section, we provide an explicit expression for the integral 

´ dd⃗k
(2π)d G̃h (⃗k) instead of 

´ dd⃗k
(2π)d G̃v (⃗k), 

which is implicit and can not be calculated analytically. Like the derivation in Appendix 1—figure 9, 

we consider the lower and upper limits of integration for 
´ dd⃗k

(2π)d G̃h (⃗k) as [0, π
ϵ ]. We then approximate 
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the Fourier transform f̃(⃗k) as a power-law function. To ensure that the singularity f̃(⃗ks) = z
ρ of G̃h (⃗k) 

falls within the integration range of [0, π
ϵ ], we introduce a simple correction xϵ = C(πϵ )µ−d to f̃(⃗k):

	 f̃(⃗k) = C∥⃗k∥µ−d − xϵ� (103)

where C = C0ϵ
µ, C0 = 2d−µπ

d
2
Γ( d−µ

2 )
Γ( µ2 )  are all constants depending on the parameters d, µ, and ϵ. Then 

we compute the contour integral (Appendix 2—figure 1A) by Taylor expansion. As a result, we have

	

ˆ
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ˆ π
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z
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ρ
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ρ
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− 1
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CP z
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ϵ ( z

ρ
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−P + j
− πcot(π(−P))( z

ρ
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= 1
2π(d − µ)

CP z
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(
∞∑
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x1−P+j
ϵ ( z

ρ
+ xϵ)−1−j

(P − 1 − j)(P − j)
− πcot(πP)( z

ρ
+ xϵ)−P z

z + ρxϵ
)

= πd−1z
2(d − µ)ρϵd (

∞∑
j=0

( z
ρxϵ

+ 1)−1−j

(P − 1 − j)(P − j)
− πcot(πP)( z

ρxϵ
+ 1)−P z

z + ρxϵ
)

�

(S104)

where P = d
d−µ > 1.

Now let us take a close look at the behavior of the function ratioh(z) Equation S92, plotted in 
Appendix 2—figure 2A,B . For small z, this function is negative. It then crosses zero and has a 
peak. As z → ∞, the ratioh approaches zero. This is because Equation S104 approaches a positive 
constant, which is given by

	
lim

z→∞

ˆ
ddk⃗

(2π)d G̃h (⃗k) = πd−1C2
2(d − µ)(P − 1)P

,
�

where C2 = C(πϵ )µ. For z ≥ 1, we find the leading order expansion at j = 1 already gives an accurate 
approximation (Appendix 2—figure 2A,B).

	

ˆ
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(2π)d G̃h (⃗k) ≈

1
2π(d − µ)

CP z
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
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ρ
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(P − 1)(P)
+

x2−P
ϵ ( z

ρ
+ xϵ)−2

(P − 2)(P − 1)
− πcot(πP)( z

ρ
+ xϵ)

−
d

d − µ z
z + ρxϵ



�

(S105)

Estimate the parameter condition when the high-density theory best agrees 
with numerical simulation
By analyzing the properties of the function 

´ dd⃗k
(2π)d G̃h (⃗k), we think the high-density theory provides an 

accurate approximation when the zero-crossing of 
´ dd⃗k

(2π)d G̃h (⃗k) is near z = 1 (the peak of low-density 

result Mézard et al., 1999) The root z0 of the integral 
´ dd⃗k

(2π)d G̃h (⃗k) is given by

	

ρxϵ
z0

= g1(d,µ)
�

(S106)

It is easy to see that g1(d,µ) is a function of P (or d
µ) from Equation S104. We can rewrite Equation 

S106 as
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ρxϵ
z0

= g2( d
µ

)
�

(S107)

Here, we can also see that z0 can be expressed as:

	
z0 = c0π

µ−dρϵd

g1(d,µ) �

Using this expression for z0 and letting z0 = 1, we can derive the following equation for ρϵd, a 
dimensionless parameter that determines the condition when the high-density theory is an accurate 
approximation of our ERM model:

	

ρϵd =
z0g2( d

µ
)Γ(µ

2
)

2d−µπ
µ−

d
2 Γ( d − µ

2
)
�

(S108)

Appendix 2—figure 2C shows how ρϵd changes as a function d for a small and fixed µ/d. For 
example, when d = 2, µ = 0.5, ϵ = 0.03125, we find

	 ρϵd = 0.83,or ρ = 850�

This estimate is also consistent with our numerical simulation (Figure 4—figure supplement 1).

Wick rotation
To ensure mathematical rigor in Appendix 2, we should make sure that the action S1 in Equation S46 
is a real number. Here, we use Wick rotation to transform Equations S28–S30. The Gaussian integral 
Equation S29 can be divergent when G−1(⃗x − y⃗) is not positive definite, To address this issue, we 
can always write the partition function ⟨Ξn(z)⟩ as a Gaussian integral by choosing the appropriate 
axes with Wick rotation.

	

⟨
Ξn(z)

⟩
= (2πi)

Nn
2 (det f)−n/2

ˆ +∞

−∞
D[ψ̂α]eS1

�
(S109)

	
S1 = N ln A − i

2

n∑
α=1

ˆ +∞

−∞
d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′)

�

We can now change the integration variables by diagonalizing ψ̂α to ψ̃α via ψ̃α = Qψ̃α ,where Q 
is Fourier base

	

⟨
Ξn(z)

⟩
= (2πi)

Nn
2 (det f)−n/2

ˆ +∞

−∞
D[ψ̃α]eS1

�
(S110)

	
S1 = N ln Ã − i

2

n∑
α=1

ˆ +∞

−∞
ddk⃗̃f−1(⃗k)ψ̃α (⃗k)2

�

	
Ã =
ˆ ∞

−∞

ddk⃗
V

(z)
n
2 exp

[
i

2z

n∑
α=1

ψ̃α (⃗k)2
]

�
(S111)

by letting L → ∞. Note that eS1 is analytic. Thus if

	
lim

ψ̃α→(1−i)∞
eS1 = 0

�

and the convergence rate is faster than 1/ψ̃2, we can apply the Wick rotation ψα (⃗x) → ψα (⃗x)e−i π4 : 
instead of computing the integral on the real axis C1, we now rotate the integral line 45 degree 
clockwise to C3 in the complex plane:

https://doi.org/10.7554/eLife.100666
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ˆ

C1

D[ψ̂α]eS1 =
ˆ

C3

D[ψ̂α]eS1

�
(S112)

On the other hand, if

	
lim

ψ̃α→(1+i)∞
eS1 = 0

�

and the convergence rate is faster than 1/ψ̃2, we can apply the Wick rotation ψα (⃗x) → ψα (⃗x)ei π4 , 
namely to rotate the integral line 45 degree counterclockwise to C2:

	

ˆ

C1

D[ψ̂α]eS1 =
ˆ

C2

D[ψ̂α]eS1

�
(S113)

As a simple example, consider a one-dimensional Gaussian integral

	

ˆ ∞

−∞
dxe−ikx2

�

When k > 0, we can use the Wick rotation x → xe−i π4

	

ˆ ∞

−∞
dxe−ikx2

= e
−i

π

4
ˆ ∞

−∞
dxe−kx2

= e
−i

π

4
√

2π
k

=
√

2π
ik �

When k < 0, we can use the Wick rotation x → xei π4

	

ˆ ∞

−∞
dxe−ikx2

= e
i
π

4
ˆ ∞

−∞
dxekx2

= e
i
π

4
√

2π
−k

=
√

2π
ik �

Without loss of generality, we rotate ψα (⃗x) → ψα (⃗x)e−i π4  in Appendix 2 for subsequent calculations.

Grand canonical ensemble
When using the Gaussian variational Approximation, we consider a critical extension from the 
canonical ensemble to the grand canonical ensemble when computing the partition function 
(Equation S9). We would like to justify this approximation in this section. Recall that the resolvent 
is given by

	
g(z) = − 2

N
∂z ⟨lnΞ(z)⟩

�

where Ξ(z) can be viewed as the canonical partition function, the ⟨...⟩ is the average over all random 
matrices C for a given N . Let us now generalize (Equation S9) into grand canonical ensemble, 
namely

	
g(z) =

⟨
− 2

N
∂z ⟨lnΞ(z)⟩

⟩

N �
(S114)

where ⟨...⟩N  indicates that we need to average over all possible random matrices and across 
all possible N  , with the probability to have a matrix size N  given by the Poisson distribution 
P(N) = e−a aN

N!, where a = ⟨N⟩. When ⟨N⟩ is large, P(N) has a very sharp peak at ⟨N⟩, and Equation 
S114 can be approximated as

	
g(z) ≈ − 2

⟨N⟩∂z ⟨lnΞ(z)⟩⟨N⟩
�

(S115)

Using the replica trick, we recall Equation S12

	
g(z) = lim

n→0
− 2

Nn
∂z ln

⟨
Ξn(z)

⟩
�

Let us now define the grand canonical partition function as

https://doi.org/10.7554/eLife.100666
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Z =

∞∑
N=0

⟨Ξn
N(z)⟩aN

N!
,
�

(S116)

Likewise, the resolvent in Equation S12 is generalized to

	
g(z) = lim

n→0
− 2
⟨N⟩n∂z lnZ .

�
(S117)

To see whether this definition makes sense, we write

	

g(z) = lim
n→0

− 2
⟨N⟩n

∑∞
N=0 ∂z⟨Ξn

N(z)⟩aN/N!
Z

= lim
n→0

− 2
⟨N⟩n

∑∞
N=0 ∂z[1 + n⟨lnΞN(z)⟩]aN/N!

∑∞
N=0⟨Ξn

N(z)⟩aN

N!

= − 2
⟨N⟩

∑∞
N=0 ∂z⟨lnΞN(z)⟩aN/N!

∑∞
N=0

aN

N!

= − 2
⟨N⟩∂z

⟨
lnΞ(z)

⟩
N

,
�

(S118)

where the second equality uses the identity

	
lnΞ = lim

n→0

Ξn − 1
n

,
�

and the last equality is indeed Equation S115 discussed earlier. Returning back to the explicit form 
of the grand canonical partition function in our ERM model (Equations S29–S31), we have

	
Z =

ˆ +∞

−∞
D[ψ̂α]eS0+aA =

ˆ +∞

−∞
D[ψ̂α]eS0+⟨N⟩A.

�
(S119)

Here, ψ is the auxiliary fields (Equation S15), S0 = − 1
2

n∑
α=1

´ +∞
−∞ d⃗xd⃗x′f −1(⃗x − x⃗′)ψ̂α (⃗x)ψ̂α (⃗x′) and 

A are terms defined in Equation S119, Equations S29–S31 is used in Appendix 2 to compute the 
free energy.

E-I balanced asynchronized model summary
In this section, we discuss the E-I balanced asynchronized model (Renart et  al., 2010), which 
predicts a different scaling D N under random sampling, since the variance Ek

i̸=j(c
2
ij) scales as 1/N and 

diminishes as N approaches large limit.

Model
The simulation of binary networks involves updating neuron states within a network architecture 
identical to analytical studies. The update rule is probabilistic, with neuron activities set based on 
synaptic currents and a firing threshold. The dynamics resolution improves with network size, with 
neuron time constants effectively representing changes in firing activity. Parameters for simulations 
include connection probabilities, mean rates, thresholds, and synaptic strengths, scaled appropriately 
for network size.

Update rule: σα
i (t + 1) = Θ

(∑
j Jαβij σβ

j (t) − θαi

)

Dynamics resolution: dt = τ
3N

In the simulation of binary networks, the model’s dynamics are governed by a set of parameters, 
each with a specific role:

σα
i (t + 1): This represents the state of neuron i in population α at the next time step t + 1. The 

state is binary, where 1 indicates the neuron is active (firing) and 0 indicates it is inactive.
Θ(·): The Heaviside step function used in the update rule. It determines the neuron’s next state 

by comparing the net input to the neuron against its firing threshold. If the net input exceeds the 
threshold, the neuron’s state is set to active; otherwise, it remains or becomes inactive.

https://doi.org/10.7554/eLife.100666
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∑
j Jαβij σβ

j (t): This sum represents the total synaptic input to neuron i from all neurons j in population 

β at time t . Jαβij  is the synaptic weight from neuron j in population β to neuron i in population α, and 
σβ

j (t) is the state of neuron j at time t.
θαi  : The firing threshold of neuron i in population α. It is the value against which the net synaptic 

input is compared to determine whether neuron i will fire (transition to state 1) or not (remain in 
state 0).

α = {E, I}, β = {E, I, X}: Represents a specific population of neurons within the network. E: 
excitatory neurons, I: inhibitory neurons, or X: external source of neurons that provide inputs to the 
network but are not influenced by the network’s internal dynamics.

Firing Rate Correlation r
The mean firing rate correlation E(r) scales inversely with the network size N , specifically, E(r) ∼ 1/N . 
The standard deviation σr of r decays only as 1/

√
N  (Renart et al., 2010).

Given that the variance of r, denoted as Var(r), is b
N , and the expected value of r, denoted as E(r), 

is a
N , where N  is the sample size, and a and b are constants, we aim to calculate E(r2), the expected 

value of the square of the correlation coefficient r.
The term Ek

i̸=j(c
2
ij) in PR dimension is given by:

	 Var(r) = E(r2) − [E(r)]2
� (S120)

Substituting Var(r) = b
N  and E(r) = a

N  into the equation, we get:

	
Ek

i ̸=j(c
2
ij) = E(r2) = b

N
+
( a

N

)2
∼ 1

N �
(S121)

Thus in PR dimension DPR(C) = N2(E[σ2]
)2

NE[σ4]+N(N−1)Ei ̸=j[c2
ij]

, the term NE[σ4] and N(N − 1)Ei̸=j[c2
ij] are of 

the same order, and the PR dimension will not reach the upper bound 
(

E[σ2]
)2

Ei̸=j[c2
ij]

.

Appendix 2—figure 2. Relationship between ratioh and z. (A) ρ = 1024, (B) ρ = 256. Blue line: ratioh calculated 
numerically. Red line: 100-order expansion of Equation S104, which perfectly overlaps with the blue line. Green 
line: expansion to the first order. Other parameter: µ = 0.5, d = 2, ϵ = 0.03125. (C) Relationship between ρϵd  and 
dimension d  with fixed µd  Equation S108.
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Appendix 2—figure 3. Wick rotation in complex plane.

Appendix 2—table 1. Table of notations.

Notation Description

g(z) Resolvent Equation S5

⟨. . . ⟩ The average across realizations of 𝐶 (i.e., random x⃗′i s and σ2
i ’s), Equation S4

Ξ(z)
Canonical partition function, Gaussian integral representation of the determinant [det(z − C)]1/2 , 
Equation S8

ϕ Intermediate variable for Gaussian integral representation Ξ(z), Equation S8

Appendix 2—table 1 Continued on next page
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Notation Description

Ψ Density field of ϕ

Ψ̂ Respective Lagrange multiplier fields of Ψ

S1 The action in Ξ(z) (by analogy with the path integral formulation of quantum mechanics)

Sh The action in the high-density approximation of Ξ(z)

Sv The action in the variational approximation of Ξ(z)

A Term in S1

f −1 The operator inverse of f , Equation S26

G Quadratic kernel in the Gaussian integral approximation of Ξ(z)

G−1 The operator inverse of G, same definition as f −1

G̃ The Fourier transform of G

Appendix 2—table 1 Continued
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