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This valuable study shows a surprising scale-invariance of the covariance spectrum
of large-scale recordings in the zebrafish brain in vivo. A solid analysis demonstrates
that a Euclidean random matrix model of the covariance matrix recapitulates these
properties. The results provide several new and insightful approaches for probing
large-scale neural recordings.
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Abstract

Understanding neural activity organization is vital for deciphering brain function. By
recording whole-brain calcium activity in larval zebrafish during hunting and spontaneous
behaviors, we find that the shape of the neural activity space, described by the neural
covariance spectrum, is scale-invariant: a smaller, randomly sampled cell assembly resembles
the entire brain. This phenomenon can be explained by Euclidean Random Matrix theory,
where neurons are reorganized from anatomical to functional positions based on their
correlations. Three factors contribute to the observed scale invariance: slow neural
correlation decay, higher functional space dimension, and neural activity heterogeneity. In
addition to matching data from zebrafish and mice, our theory and analysis demonstrate
how the geometry of neural activity space evolves with population sizes and sampling
methods, thus revealing an organizing principle of brain-wide activity.
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1 Introduction

Geometric analysis of neuronal population activity has revealed the fundamental structures of
neural representations and brain dynamics (1     –4     ). Dimensionality reduction methods, which
identify collective or latent variables in neural populations, simplify our view of high-dimensional
neural data (5     ). Their applications to optical and multi-electrode recordings have begun to
reveal important mechanisms by which neural cell assemblies process sensory information (6     ,
7     ), make decisions (8     , 9     ), maintain working memory (10     ) and generate motor behaviors
(1     , 11     –13     ).

In the past decade, the number of neurons that can be simultaneously recorded in vivo has grown
exponentially (11     , 14     –21     ). This increase spans various brain regions (6     , 16     , 22     ) and
the entire mammalian brain (23     , 24     ). As more neurons are recorded, the multidimensional
neural activity space, with each axis representing a neuron’s activity level (Fig. 1A     ), becomes
more complex. The changing size of observed cell assemblies raises a number of basic questions.
How does this space’s geometry evolve and what structures remain invariant with increasing
number of neurons recorded? A key measure, the effective dimension or participation ratio
(denoted as DPR, Fig. 1B     ), captures a major part of variability in neural activity (25     –29     ).
How does DPR vary with the number of sampled neurons (Fig. 1A     )? Two scenarios are possible:
DPR grows continuously with more sampled neurons; DPR saturates as the sample size increases.
Which scenario fits the brain? Furthermore, even if two cell assemblies have the same DPR, they
can have different shapes (Fig. 1C     ). How does the shape vary with the number of neurons
sampled? Lastly, are we going to observe the same picture of neural activity space when using
different recording methods such as two-photon microscopy, which records all neurons in a brain
region, versus Neuropixels (16     ), which conducts a broad random sampling of neurons?

Here, we aim to address these questions by analyzing brain-wide Ca2+ activity in larval zebrafish
during hunting or spontaneous behavior (Fig. 2A     ) recorded by Fourier light-field microscopy
(30     ). The small size of this vertebrate brain, together with the volumetric imaging method,
enables us to capture a significant amount of neural activity across the entire brain
simultaneously. To characterize the geometry of neural activity beyond its dimensionality DPR, we
examine the eigenvalues or spectrum of neural covariance (31     ) (Fig. 1C     ). The covariance
spectrum has been instrumental in offering mechanistic insights into neural circuit structure and
function, such as the effective strength of local recurrent interactions and the depiction of network
motifs (29     , 31     , 32     ). Intriguingly, we find that both the dimensionality and covariance
spectrum remain invariant for cell assemblies that are randomly selected from various regions of
the zebrafish brain. We also verify this observation in datasets recorded by different experimental
methods, including light-sheet imaging of larval zebrafish (33     ), two-photon imaging of mouse
visual cortex (23     ), and multi-area Neuropixels recording in the mouse (23     ). To explain the
observed phenomenon, we model the covariance matrix of brain-wide activity by generalizing the
Euclidean Random Matrix (ERM) (34     ) such that neurons correspond to points distributed in a d-
dimensional functional or feature space, with pairwise correlation decaying with distance. The
ERM theory, studied in theoretical physics (34     , 35     ), provides extensive analytical tools for a
deep understanding of the neural covariance matrix model, allowing us to unequivocally identify
three crucial factors for the observed scale invariance.

Building upon our theoretical results, we further explore the connection between the spatial
arrangement of neurons and their locations in functional space, which allows us to distinguish
among three sampling approaches: random sampling, anatomical sampling (akin to optical
recording of all neurons within a specific region of the brain) and functional sampling (20     ). Our
ERM theory makes distinct predictions regarding the scaling relationship between dimensionality
and the size of cell assembly, as well as the shape of covariance eigenspetrum under various

https://doi.org/10.7554/eLife.100666.1
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Figure 1.

The relationship between the geometric properties of the
neural activity space and the size of neural assemblies.

A. Illustration of how dimensionality of neural activity (DPR) changes with the number of recorded neurons. B. The
eigenvalues of the neural covariance matrix dictate the geometrical configuration of the neural activity space with 
being the distribution width along a principal axis. C. Examples of two neural populations with identical dimensionality (DPR =
25/11 ≈ 2.27) but different spatial configurations, as revealed by the eigenvalue spectrum (green: {λi} = {7, 7, 1}, blue: {λi} = {9,
3, 3}).

https://doi.org/10.7554/eLife.100666.1
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Figure 2.

Whole-brain calcium imaging of zebrafish neural activity and the
phenomenon of its scale-invariant covariance eigenspectrum.

A. Rapid light-field Ca2+ imaging system for whole brain neural activity in larval zebrafish. B. Inferred firing rate activity from
the brain-wide calcium imaging. The ROIs are sorted by their weights in the first principal component (23     ). C. Procedure of
calculating the covariance spectrum on the full and sampled neural activity matrices. D. Dimensionality (circles, average
across 8 samplings (dots)), as a function of the sampling fraction. The curve is the predicted dimensionality using Eq. (5)     . E.
Iteratively sampled covariance matrices. Neurons are sorted in each matrix to maximize values near the diagonal. F. The
covariance spectra, i.e., eigenvalue vs. rank/N, for randomly sampled neurons of different sizes (colors). The gray dots
represent the sorted variances Cii of all neurons. G to I. Same as F but from three models of covariance (see details in
Methods): (G) a Wishart random matrix calculated from a random activity matrix of the same size as the experimental data;
(H) replacing the eigenvectors by a random orthogonal set; (I) covariance generated from a randomly connected recurrent
network.

https://doi.org/10.7554/eLife.100666.1
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sampling methods. Taken together, our results offer a new perspective for interpreting brain-wide
activity and unambiguously show its organizing principles, with unexplored consequences for
neural computation.

2 Results

2.1 Geometry of neural activity across
random cell assemblies in zebrafish brain
We recorded brain-wide Ca2+ activity at a volume rate of 10 Hz in head-fixed larval zebrafish (Fig.
2A     ) during hunting attempts (Methods) and spontaneous behavior using a Fourier light field
microscopy (30     ). Approximately 2000 ROIs (1977.3 ± 677.1, mean ± SD) with a diameter of 16.84
± 8.51 µm were analyzed per fish based on voxel activity (Methods). These ROIs likely correspond
to multiple nearby neurons with correlated activity. Henceforth, we refer to the ROIs as “neurons”
for simplicity.

We first investigate the dimensionality of neural activity DPR (Fig. 1B     ) in a randomly chosen cell
assembly in zebrafish, similar to multi-area Neuropixels recording in a mammalian brain. We
focus on how DPR changes with a large sample size N. We find that if the mean squared covariance
remains finite instead of vanishing with N, the dimensionality DPR (Fig. 1B     ) becomes sample
size independent and depends only on the variance  and the covariance Cij between neurons i
and j:

where E(…) denotes average across neurons (Methods and (29     )). The finite mean squared
covariance condition is supported by the observation that the neural activity covariance Cij is
positively biased and widely distributed with a long tail (Fig. S2A). As predicted, the data
dimensionality grows with sample size and reaches the maximum value specified by Eq. (1)     
(Fig. 2D     ).

Next, we investigate the shape of the neural activity space described by the eigenspectrum of the
covariance matrix derived from the activity of N randomly selected neurons (Fig. 2C     ). When the
eigenvalues are arranged in descending order and plotted against the normalized rank r/N, where
r = 1,…,N, (we refer to it as the rank plot), this curve shows an approximate power law that spans
10 folds. Interestingly, as the size of the covariance matrices decreases (N decreases), the
eigenspectrum curves nearly collapse over a wide range of eigenvalues. This pattern holds across
diverse datasets and experimental techniques (Fig. 2F     , Fig. S2E-L). The similarity of the
covariance matrices of randomly sampled neural populations can be intuitively visualized (Fig.
2E     ), after properly sorting the neurons (Methods).

The scale invariance in the neural covariance matrix is non-trivial. The spectrum is not scale-
invariant in a common covariance matrix model based on independent noise (Fig. 2G     ). It is also
absent when replacing the neural covariance matrix eigenvectors with random ones, keeping the
eigenvalues identical (Fig. 2H     ). A recurrent neural network with random connectivity (31     )
also fails to produce the scale-invariant covariance spectrum (Fig. 2I     ). Thus, a new model for
the covariance matrix of neural activity is needed.

https://doi.org/10.7554/eLife.100666.1
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2.2 Modeling covariance by organizing neurons in functional space
Dimension reduction methods simplify and visualize complex neuron interactions by embedding
them into a low-dimensional map, within which nearby neurons have similar activities. Inspired
by these ideas, we use the Euclidean Random Matrix (ERM (34     )) to model neural covariance.
Imagine sprinkling neurons uniformly distributed on a d-dimensional functional space of size L
(Fig. 3A     ), where the distance between neurons i and j affects their correlation. Let  represent
the functional coordinate of the neuron i. The distance-correlation dependency is described by
kernel function  with f (0) = 1, indicating closer neurons have stronger correlations,

and decreases as distance  increases (Fig. 3A      and Methods). To model the covariance,
we extend the ERM by incorporating heterogeneity of neuron activity levels (shown as the size of
the neuron in the functional space in Fig. 3A     )

The variance of neural activity  is drawn i.i.d. from a given distribution and is independent of
neurons’ position.

This multidimensional functional space may represent attributes to which neurons are tuned,
such as sensory features (e.g., visual orientation (36     ), auditory frequency) and movement
characteristics (e.g., direction, speed (37     , 38     )). In sensory systems, it represents stimuli as
neural activity patterns, with proximity indicating similarity in features. For motor control, it
encodes movement parameters and trajectories. In the hippocampus, it represents the place field
of a place cell, acting as a cognitive map of physical space (39     –41     ).

We first explore the ERM with various forms of  and find that fast-decaying functions like

Gaussian and exponential functions do not produce eigenspectra similar to the data and no scale
invariance over random sampling (Fig. S4A-H and Supp. Note). Thus, we turn to slow-decaying
functions including the power law, which produce spectra similar to the data (Fig. 3C,D     ; see also
Fig. S5). We adopt a particular kernel function because of its closed-form and analytical properties:

 (Methods). For large distance , it approximates a power law
 and smoothly transitions at small distance to satisfy the correlation requirement

f (0) = 1 (Fig. S7I, J).

2.3 Analytical theory on the conditions of scale invariance in ERM
To determine the conditions for scale invariance in ERM, we analytically calculate the
eigenspectrum of covariance matrix C (Eq. (2)     ) for large N, L using the replica method (34     ). A
key order parameter emerging from this calculation is the neuron density ρ:= N/Ld. In the high-
density regime ρ ϵd ≈ 1, the covariance spectrum can be approximated in a closed form (Methods).
For the slow-decaying kernel function  defined above, the spectrum for large eigenvalues
follows a power law (Supp. Note):

where r is the rank of the eigenvalues in descending order and p(λ) is their probability density
function. Eq. (3)      intuitively explains the scale invariance over random sampling. Sampling in
the ERM reduces the neuron density ρ. The eigenspectrum is ρ-independent whenever µ/d ≈ 0. This
indicates two factors contributing to the scale invariance of the eigenspectrum. First, a small
exponent µ in the kernel function  means that pairwise correlations slowly decay with
functional distance and can be significantly positive across various functional modules and

https://doi.org/10.7554/eLife.100666.1
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Figure 3.

ERM model of covariance and its eigenspectrum.

A. Schematic of the Euclidean Random Matrix (ERM) model, which reorganizes neurons (circles) from the anatomical space to
the functional space (here d =2 is a two-dimensional box). The correlation between a pair of neurons decreases with their
distance in the functional space according to a kernel function . This correlation is then scaled by neurons’ variance 
(circle size) to obtain the covariance Cij. B. An example ERM correlation matrix (i.e., when ). C. Spectrum (same as Fig.
2F     ) for the ERM correlation matrix in B. D. Visualizing the distribution of the same ERM eigenvalues in C by plotting the
probability density function (pdf).

https://doi.org/10.7554/eLife.100666.1
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throughout the brain. For a given µ, an increase in dimension d improves the scale invariance. The
dimension d could represent the number of independent features or latent variables describing
neural activity or cognitive states.

We verify our theoretical predictions by comparing sampled eigenspectra in finite-size simulated
ERMs across different µ and d (Fig. 4A     ). We first consider the case of homogeneous neurons (

 in Eq. (2)     , revisited later) in these simulations (Fig. 3C, D      and Fig. 4A     ), making C’s
entries correlation coefficients. To quantitatively assess the level of scale invariance, we introduce
a collapse index (CI) motivated by Eq. (3)     . In the log-log scale rank plot, Eq. (3)      shows the
spectrum shifts vertically with ρ. Thus, we define CI as this average displacement (Fig. 4A      upper
right, Methods), and a smaller CI means more scale-invariant. Using CI, Fig. 4A      shows that scale
invariance improves with slower correlation decay as µ decreases and the functional dimension d
increases. Conversely, with large µ and small d, the covariance eigenspectrum varies significantly
with scale (Fig. 4A     ).

Next, we consider the general case of unequal neural activity levels  and check for differences

between the correlation (equivalent to ) and covariance matrix spectra. Using the collapsed
index (CI), we compare the scale invariance of the two spectra in experimental data. Intriguingly,
the CI of the covariance matrix is consistently smaller (more scale-invariant) across all datasets
(Fig. 4C     , Fig. S6C, open vs. closed squares), indicating that the heterogeneity of neuronal activity
variances significantly affects the eigenspectrum and the geometry of neural activity space (42     ).
By extending our spectrum calculation to the intermediate density regime ρ ϵd ≪ 1 (Methods), we
show that the ERM model can quantitatively explain the improved scale invariance in the
covariance matrix compared to the correlation matrix (Fig. S6B).

Lastly, we examine factors that turn out to have minimal impact on the scale invariance of the
covariance spectrum. First, the shape of the kernel function  over a small distance does not

affect the distribution of large eigenvalues (Fig. S7, table S3     , Fig. S9A). This supports our use of a
specific  to represent a class of slow-decaying kernels. Second, altering the spatial distribution
of neurons in the functional space, whether using a Gaussian, uniform, or clustered distribution,
does not affect large covariance eigenvalues, except possibly the leading ones (Fig. S9B, Methods).
Third, different geometries of the functional space, such as a flat square, a sphere, or a
hemisphere, result in eigenspectra similar to the original ERM model (Fig. S9C). These findings
indicate that our theory for the covariance spectrum’s scale invariance is robust to various
modeling details.

2.4 Connection among random sampling,
functional sampling, and anatomical sampling
So far, we have focused on random sampling of neurons, but how does the neural activity space
change with different sampling methods? To this end, we consider three methods (Fig. 5A1     ):
random sampling (RSap), anatomical sampling (ASap) where neurons in a brain region are
captured by optical imaging (6     , 43     , 44     ), and functional sampling (FSap) where neurons are
selected based on activity similarity (20     ). The difference among sampling methods depends on
the neuron organization throughout the brain. If anatomically localized neurons also cluster
functionally (Fig. 5A4     ), ASap FSap; if they are spread in the functional space (Fig. 5A2     ), ASap
≈ RSap. Generally, the anatomical-functional relationship is in-between and can be quantified
using the Canonical Correlation Analysis (CCA). This technique finds axes (CCA vectors  and

) in anatomical and functional spaces such that the neurons’ projection along these axes has
the maximum correlation, RCCA. The extreme scenarios described above correspond to RCCA =1
and RCCA = 0.

https://doi.org/10.7554/eLife.100666.1
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Figure 4.

Three factors contributing to scale invariance.

A. Impact of µ and d (see text) on the scale invariance of ERM spectrum (same plots as Fig. 3C     ) with
. The degree of scale invariance is quantified by the collapse index (CI), which essentially measures

the area between different spectrum curves (upper right inset). For comparison, we fix the same coordinate range across
panels hence some plots are cropped. B. Top: sampled correlation matrix spectrum in an example animal (fish 1). Bottom:
Same as top but for the covariance matrix that incorporates heterogeneous  (gray dots). C. The CI of the correlation
matrix (filled squares) is found to be larger than that for the covariance matrix (opened squares) across different datasets: f1
to f6: six light-field zebrafish data (10 Hz per volume, this paper); fl: light-sheet zebrafish data (2 Hz per volume, (33     )); mn:
mouse Neuropixels data (downsampled to 10 Hz per volume); mp: mouse two-photon data, (3 Hz per volume, (23     )).

https://doi.org/10.7554/eLife.100666.1
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Figure 5.

The relationship between the functional and anatomical space and theoretical predictions.

A. Three sampling methods (A1) and RCCA (see text). When RCCA ≈ 0 (A2), the anatomical sampling (ASap) resembles the
random sampling (RSap), and while when RCCA ≈ 1 (A4), ASap is similar to the functional sampling (FSap). B. Distribution of
neurons in the functional space inferred by MDS. Each neuron is color-coded by its projection along the first canonical
direction  in the anatomical space (see text). Data based on fish 6, same for C to E. C. Similar to B. but plotting neurons
in the anatomical space with color based on their projection along  in the functional space (see text). D. Dimensionality
(DPR) across sampling methods: average DPR under RSap (circles), average and individual brain region DPR under ASap
(squares and dots), and DPR under FSap for the most correlated neuron cluster (triangles; Methods). Dashed and solid lines
are theoretical predictions for DPR under RSap and FSap, respectively (Methods). E. The CI of correlation matrices under three
sampling methods in 6 animals (colors). **p<0.01; ***p<0.001; one-sided paired t tests: RSap vs. ASap, p = 0.0010; RSap vs.
FSap, p = 0.0004; ASap vs. FSap, p = 0.0014.

https://doi.org/10.7554/eLife.100666.1
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To determine the anatomical-functional relationship in neural data, we infer the functional
coordinates  of each neuron by fitting the ERM using multidimensional scaling (MDS) (45     )
(Methods). For simplicity and better visualization, we use a low-dimensional functional space
where d = 2. The fitted functional coordinates confirm the slow decay kernel function in ERM
except for a small distance (Fig. S12). The ERM with inferred coordinates  also reproduces the

experimental covariance matrix, including cluster structures (Fig. S11) and its sampling
eigenspectra (Fig. S10).

Equipped with the functional and anatomical coordinates, we next use CCA to determine which
scenarios illustrated in Fig. 5A      align better with the neural data. Fig. 5B,C      shows a
representative fish with a significant RCCA = 0.327 (p-value=0.0042, Anderson–Darling test).
Notably, the CCA vector in the anatomical space, , aligns with the rostrocaudal axis. Coloring
each neuron in the functional space by its projection along  shows a correspondence

between clustering and anatomical coordinates (Fig. 5B     ). Similarly, coloring neurons in the
anatomical space (Fig. 5C     ) by their projection along  reveals distinct localizations in
regions like the forebrain and optic tectum. Across animals, functionally clustered neurons show
anatomical segregation (33     ), with an average RCCA of 0.335±0.054 (mean±SD).

Next, we investigate the effects of different sampling methods (Fig. 5A1     ) on the geometry of the
neural activity space when there is a significant but moderate anatomical-functional correlation
as in the experimental data. Interestingly, dimensionality  in data under anatomical

sampling consistently falls between random and functional sampling values (Fig. 5D     ). This
phenomenon can be intuitively explained by the ERM theory. Recall that for large N, the key term
in Eq. (1)      is . For a fixed number of sampled neurons, this average squared covariance

is maximized when neurons are selected closely in the functional space (FSap) and minimized
when distributed randomly (RSap). Thus, RSap and FSap DPR set the upper and lower bounds of
dimensionality, with ASap expected to fall in between. This reasoning can be precisely formulated
to obtain quantitative predictions of the bounds (Methods). We predict the ASap dimension at
large N as

Here DPR is the dimensionality under RSap (Eq. (1)     ), k represents the fraction of sampled
neurons. RASap is the correlation between anatomical and functional coordinates along the
direction where the anatomical subregions are divided (Methods), and it is bounded by the
canonical correlation RASap ≤ RCCA. When RASap = 0, we get the upper bound  (Fig.
5D      dashed line). The lower bound is reached when RASap = RCCA =1 (Fig. 5A4     ), where Eq.
(4)      shows a scaling relationship  that depends on the sampling fraction

k (Fig. 5D      solid line). This contrasts with the k-independent dimensionality of RSap in Eq. (1)     .
Furthermore, if RASap and its upper bound is not close to 1 (precisely RASap ≤ 0.84 for the ERM
model in Fig. 5D     ),  align closer to the upper bound of RSap. This prediction agrees well

with our observations in data across animals (Fig. 5D     , Fig. S20 and Fig. S21).

Beyond dimensionality, our theory predicts the difference in the covariance spectrum between
sampling methods based on the neuronal density ρ in the functional space (Eq. (3)     ). This density
ρ remains constant during Fsap (Fig. 5A1     ) and decreases under RSap; the average density
across anatomical regions ⟨ ρ ⟩in ASap lies between those of FSap and RSap. Analogous to Eq.
(4)     , the relationship in ρ orders the spectra: ASap’s spectrum lies between those of FSap and
RSap (Methods). This further implies that the level of scale invariance under ASap should fall
between that of RSap and FSap, which is confirmed by our experimental data (Fig. 5E     ).

https://doi.org/10.7554/eLife.100666.1
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3 Discussion

Impact of hunting behavior on scale
invariance and functional space organization
How does task-related neural activity shape the covariance spectrum and brain-wide functional
organization? We examine the hunting behavior in larval zebrafish, marked by eye convergence
(both eyes move inward to focus on the central visual field) (46     ). We find that scale invariance
of the eigenspectra persists when the hunting frames from the Ca2+ imaging data are removed
(Fig. 4C     , Fig. S15AB, Methods). This is consistent with the scale-invariant spectrum found in
other data sets during spontaneous behaviors (Fig. S10F, Fig. S2GH), suggesting scale invariance is
a general phenomenon.

Interestingly, in the inferred functional space, we observe reorganizations of neurons after
removing hunting behavior (Fig. S15C, D). Neurons in one cluster disperse from their center of
mass (Fig. S15D) and decreases the local neuronal density ρ (Methods and Fig. S15E). The neurons
in this dispersed cluster have a consistent anatomical distribution from the midbrain to the
hindbrain in 4 out of 5 fish (Fig. S17). During hunting, the cluster has robust activations that are
widespread in the anatomical space but localized in the functional space(Movie. S1).

Our findings suggest that the functional space could be defined by latent variables that represent
cognitive factors such as decision-making, memory, and attention. These variables set the space’s
dimensions, with neural activity patterns reflecting cognitive state dynamics. Functionally related
neurons – through sensory tuning, movement parameters, internal conditions, or cognitive factors
– become closer in this space, leading to stronger activity correlations.

Criticality and power law
What drives brain dynamics with a slow-decaying distance-correlation function  in functional
space? Long-range connections and a slow decline in projection strength over distance (47     ) may
cause extensive correlations, enhancing global activity patterns. This behavior is also reminiscent
of phase transitions in statistical mechanics (48     ), where local interactions lead to expansive
correlated behaviors. Studies suggest that critical brains optimize information processing (49     ,
50     ). The link between neural correlation structures and neuronal connectivity topology is an
exciting area for future exploration.

In the high-density regime of the ERM model, the eigenvalue rank plot (Eq. (3)     ) follows a power
law λ ∼r−α, with α < 1. The scale invariant spectrum occurs when – is close to 1. Experimental data,
however, align more closely with the model in the intermediate-density regime, where the power-
law spectrum is an approximation and the decay is slower (for ERM model Fig. S3BC, and for data
– = 0.47 ± 0.08, mean ± SD, n =6 fish). Stringer et al. (6     ) found an α ≈ 1 decay in the mouse visual
cortex’s stimulus trial averaged covariance spectrum, suggesting this decay optimizes visual code
efficiency and smoothness. Our study differs as we recorded brain-wide activity during
spontaneous or hunting behavior, calculating neural covariance from single-trial activity. Much of
the neural activity was not driven by sensory stimulus and unrelated to specific tasks, requiring a
different interpretation of the neural covariance spectrum.

We draw inspiration from the renormalization group (RG) approach to navigate neural covariance
across scales, which has also been explored in the recent literature. Following Kadanoff’s block
spin transformation (48     ), Meshulam et al. (20     ) formed size-dependent neuron clusters and
their covariance matrices by iteratively pairing the most correlated neurons and placing them
adjacent on a lattice. The groups expanded until the largest reached the system size. The RG

https://doi.org/10.7554/eLife.100666.1
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process, akin to spatial sampling in functional space (FSap), maintains constant neuron density ρ.
Thus, for any kernel function , including the power law and exponential, the covariance
eigenspectrum remains invariant across scales (Fig. S19A,B,D,E).

Bounded dimensionality under random sampling
The saturation of the dimensionality DPR at large sample sizes indicates a limit to neural assembly
complexity, evidenced by the finite mean square covariance. This is in contrast with neural
dynamics models such as the balanced excitatory-inhibitory (E-I) neural network (51     ), where

 resulting in an unbounded dimensionality (see Supp. Note). Our results suggest that

the brain encodes experiences, sensations, and thoughts using a finite set of dimensions instead of
an infinitely complex neural activity space.

We found that the relationship between dimensionality and the number of recorded neurons
depends on the sampling method. For functional sampling, the dimensionality scales with the
sampling fraction . This suggests that if anatomically sampled neurons are

functionally clustered, as with cortical neurons forming functional maps, the increase in
dimensionality with neuron number may seem unbounded. This offers new insights for
interpreting large-scale neural activity data recorded under various techniques.

Computational benefits of a scale-invariant covariance spectrum
The scale invariance of neural activity across different neuron assembly sizes could support
efficient multiscale information encoding and processing. It indicates that the neural code is
robust and requires minimal adjustments despite changes in population size. One recent study
shows that randomly sampled and coarse-grained macrovoxels can predict population neural
activity (52     ), reinforcing that a random neuron subset may capture overall activity patterns.
This enables downstream circuits to readout and process information through random projections
(27     ).

Understanding how dimensionality and spectrum change with sample size also suggests the
possibility of extrapolating from small samples to overcome experimental limitations. This is
particularly feasible when µ/d → 0, where the dimensionality and spectrum under anatomical,
random, and functional sampling coincide (Equations (3)      and (4)     ). Developing extrapolation
methods and exploring the benefits of scale-invariant neural code are promising future research
directions.

4 Materials and Methods

4.1 Experimental methods
The handling and care of the zebrafish complied with the guidelines and regulations of the Animal
Resources Center of the University of Science and Technology of China (USTC). All larval zebrafish
(huc:h2b -GCaMP6f) were raised in E2 embryo medium (comprising 7.5 mM NaCl, 0.25 mM KCl, 0.5
mM MgSO4, 0.075 mM KH2PO4, 0.025 mM Na2HPO4, 0.5 mM CaCl2, and 0.35 mM NaHCO3;
containing 0.5 mg/L methylene blue) at 28.5 °C and with a 14-h light and 10-h dark cycle.

To induce hunting behavior (composed of motor sequences like eye convergence and J turn) in
larval zebrafish, we fed them a large amount of paramecia over a period of 4-5 days post-
fertilization (dpf). The animals were then subjected to a 24-hour starvation period, after which
they were transferred to a specialized experimental chamber. The experimental chamber was
20mm in diameter and 1mm in depth, and the head of each zebrafish was immobilized by
applying 2% low melting point agarose. The careful removal of the agarose from the eyes and tail
of the fish ensured that these body regions remained free to move during hunting behavior. Thus,
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characteristic behavioral features such as J-turns and eye convergence could be observed and
analyzed. Subsequently, the zebrafish were transferred to an incubator and stayed overnight. At 7
dpf, several paramecia were introduced in front of the previously immobilized animals, each of
which was monitored by a stereomicroscope. Those displaying binocular convergence were
selected for subsequent Ca2+ imaging experiments.

We developed a novel optomagnetic system that allows (1     ) precise control of the trajectory of
the paramecium and (2     ) imaging brain-wide Ca2+ activity during the hunting behavior of
zebrafish. To control the movement of the paramecium, we treated these microorganisms with a
suspension of ferric tetroxide for 30 minutes and selected those that responded to its magnetic
attraction. A magnetic paramecium was then placed in front of a selected larva, and its movement
was controlled by changing the magnetic field generated by Helmholtz coils that were integrated
into the imaging system. The real-time position of the paramecium, captured by an infrared
camera, was identified by online image processing. The positional vector relative to a
predetermined target position was calculated. The magnitude and direction of the current in the
Helmholtz coils were adjusted accordingly, allowing for precise control of the magnetic field and
hence the movement of the paramecium. Multiple target positions could be set to drive the
paramecium back and forth between multiple locations.

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types of
behavior: induced hunting behavior by a moving paramecium in front of a fish (fish 1-5), and
spontaneous behavior without any visual stimulus as a control (fish 6). Experiments were carried
out at ambient temperature (ranging from 23°C to 25°C). The behavior of the zebrafish was
monitored by a high-speed infrared camera (Basler acA2000-165umNIR, 0.66x) behind a 4F optical
system and recorded at 50 Hz. Brain-wide Ca2+ imaging was achieved using XLFM. Light-field
images were acquired at 10 Hz, using customized LabVIEW software (National Instruments, USA)
or Solis software (Oxford Instruments, UK), with the help of a high-speed data acquisition card
(PCIe-6321, National Instruments, USA) to synchronize the fluorescence with behavioral imaging.

4.1.1 Behavior analysis

The background of each behavior video was removed using the clone stamp tool in Adobe
Photoshop CS6. Individual images were then processed by an adaptive thresholding algorithm,
and fish head and yolk were selected manually to determine the head orientation. The entire body
centerline, extending from head to tail, was divided into 20 segments. The amplitude of a bending
segment was defined as the angle between the segment and the head orientation. To identify the
paramecium in a noisy environment, we subtracted a background image, averaged over a time
window of 100 s, from all the frames. The major axis of the left or right eye was identified using
DeepLabCut (53     ). The eye orientation was defined as the angle between the rostrocaudal axis
and the major axis of an eye; The convergence angle was defined as the angle between the major
axes of the left and right eyes. An eye-convergence event was defined as a period of time where
the angle between the long axis of the eyes stayed above 50 degrees (46     ).

4.1.2 Imaging data acquisition and processing

We used a fast eXtended light field microscope (XLFM, with a volume rate of 10 Hz) to record Ca2+

activity throughout the brain of head-fixed larval zebrafish. Fish were ordered by the dates of
experiments. As previously described (30     ), we adopted the Richardson-Lucy deconvolution
method to iteratively reconstruct 3D fluorescence stacks (600 × 600 × 250) from the acquired 2D
images (2048 × 2048). This algorithm requires an experimentally measured point spread function
(PSF) of the XLFM system. The entire recording for each fish is 15.3±4.3 min (mean±SD).

To perform image registration and segmentation, we first cropped and resized the original image
stack to 400 × 308 × 210, which corresponded to the size of a standard zebrafish brain (zbb) atlas
(54     ). This step aimed to reduce substantial memory requirements and computational costs in
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subsequent operations. Next, we picked a typical volume frame and aligned it with the zbb atlas
using a basic 3D affine transformation. This transformed frame was used as a template. We
aligned each volume with the template using rigid 3D intensity-based registration (55     ) and non-
rigid pairwise registration (56     ) in the Computational Morphometry Toolkit (CMTK) (https://www
.nitrc.org/projects/cmtk/     ). After voxel registration, we computed the pairwise correlation
between nearby voxel intensities and performed the watershed algorithm on the correlation map
to cluster and segment voxels into consistent ROIs across all volumes. We defined the diameter of
each ROI using the maximum Feret diameter (the longest distance between any two voxels within
a single ROI).

Finally, we adopted the “OASIS” deconvolution method to denoise and infer neural activity from
the fluorescence time sequence (57     ). The deconvolved Δ F/F of each ROI was used to infer firing
rates for subsequent analysis.

4.2 Other experimental datasets analyzed
To validate our findings across different recording methods and animal models, we also analyzed
three additional datasets. We include a brief description below for completeness. Further details
can be found in the respective reference. The first dataset includes whole-brain light-sheet Ca2+

imaging of immobilized larval zebrafish in the presence of visual stimuli as well as in a
spontaneous state (33     ). Each volume of the brain was scanned through 2.11 ± 0.21 planes per
sec, providing a near-simultaneous readout of neuronal Ca2+ signals. We analyzed fish 8 (69,207
neurons × 7,890 frames), 9 (79,704 neurons × 7,720 frames) and 11 (101,729 neurons × 8,528
frames), which are the first three fish data with more than 7,200 frames. For simplicity, we labeled
them l2, l3, and l1(fl). The second dataset consists of Neuropixels recordings from approximately
ten different brain areas in mice during spontaneous behavior (23     ). Data from the three mice,
Kerbs, Robbins, and Waksman, include the firing rate matrices of 1,462 neurons × 39,053 frames,
2,296 neurons × 66,409 frames, and 2,688 neurons × 74,368 frames, respectively. The last dataset
comprises two-photon Ca2+ imaging data (2-3 Hz) obtained from the visual cortex of mice during
spontaneous behavior. While this dataset includes numerous animals, we focused on the first
three animals that exhibited spontaneous behavior:spont_M150824_MP019_2016-04-05 (11,983
neurons × 21,055 frames), spont_M160825_MP027_2016-12-12 (11,624 neurons × 23,259 frames),
and spont_M160907_MP028_2016-09-26 (9,392 neurons × 10,301 frames) (23     ).

4.3 Covariance matrix, eigenspectrum and sampling procedures
To begin, we multiplied the inferred firing rate of each neuron (see section 4.1.2     ) by a constant
such that in the resulting activity trace xi, the mean of xi(t) over the nonzero time frames equaled
one (20     ). Consistent with the literature (20     ), this step aimed to eliminate possible confounding
factors in the raw activity traces, such as the heterogeneous expression level of the fluorescence
protein within neurons and the non-linear conversion of the electrical signal to Ca2+

concentration. Note that after this scaling, neurons could still have different activity levels
characterized by the variance of xi(t) over time, due to differences in the sparsity of activity
(proportion of nonzero frames) and the distribution of nonzero xi(t) values. The scale-invariant
nature of the eigenspectrum (Fig. 2F     ) was unaffected by this imposed scaling of the mean
activity, as the phenomenon of scale invariance persisted in the absence of such normalization.
The three models of covariance in Fig. 2G-I      were constructed as follows. For model in Fig. 2G     ,
the entries of matrix G (with dimensions N × T) were sampled from an i.i.d. Gaussian distribution
with zero mean and standard deviation σ = 1. In Fig. 2H     , we constructed the composite
covariance matrix for fish 1 achieved by maintaining the eigenvalues from the fish 1 data
covariance matrix and replacing the eigenvectors U with a set of random orthonormal basis.
Lastly, the covariance matrix in Fig. 2I      was generated from a randomly connected recurrent
network of linear rate neurons. The entries in the synaptic weight matrix are normally distributed
with Jij ∼ 𝒩 (0,g2/N), with a coupling strength g = 0.95 (31     , 32     ). For consistency, we used the
same number of time frames T = 7, 200 when comparing CI across all the datasets (Fig. 4BC     , Fig.
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5DE     , Fig. S6C). For other cases, we analyzed the full length of the data (number of time frames:
fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish 4 - 7318, fish 5 - 7200, fish 6 - 9388). Next, the
covariance matrix was calculated as , where  is the mean of

xi(t) over time. Finally, to visualize covariance matrices on a common scale, we multiplied matrix
C by a constant such that the average of its diagonal entries equaled one, that is, Tr(C)/N = 1. This
scaling did not alter the shape of covariance eigenvalue distribution, but set the mean at 1 (see
also Eq. (8)     ).

To maintain consistency across data sets, we fixed the same initial number of neurons at N0 = 1,
024. These N0 neurons were randomly chosen once for each zebrafish dataset and then used
throughout the subsequent analyses. We adopted this setting for all analyses except in two
particular instances: (1     ) for comparisons among the three sampling methods (RSap, ASap, and
FSap), we specifically chose 1,024 neurons centered along the anterior-posterior axis, mainly from
the midbrain to the anterior hindbrain regions (Fig. 5DE     , Fig. S20). (2     ) When investigating the
impact of hunting behavior on scale invariance, we included the entire neuronal population
(section 4.11     ).

We used an iterative procedure to sample the covariance matrix C (calculated from data or as
simulated ERMs). For RSap, in the first iteration, we randomly selected half of the neurons. The
covariance matrix for these selected neurons was a N/2 × N/2 diagonal block of C. Similarly, the
covariance matrix of the unselected neurons was another diagonal block of the same size. In the
next iteration, we similarly created two new sampled blocks with half the number of neurons for
each of the blocks we had. Repeating this process for n iterations resulted in 2n blocks, each
containing N := N0/2n neurons. At each iteration, the eigenvalues of each block were calculated and
averaged across the blocks after being sorted in descending order. Finally, the averaged
eigenvalues were plotted against rank/N on a log-log scale.

In the case of ASap and FSap, the process of selecting neurons was different, although the
remaining procedures followed the RSap protocol. In ASap, the selection of neurons was based on
a spatial criterion: neurons close to the anterior end on the anterior-posterior axis were grouped
to create a diagonal block of size , with the remaining neurons forming a separate block.

FSap, on the other hand, used the Renormalization Group (RG) framework (20     ) to define the
blocks (details in section 4.12     ). In each iteration, the cluster of neurons within a block that
showed the highest average correlation  was identified and labeled as the most

correlated cluster (refer to Fig. 5D     , Figures S20 and S21).

In the ERM model, as part of implementing ASap, we generated anatomical and functional
coordinates for neurons with a specified CCA properties as described in section 4.9     . Mirroring
the approach taken with our data, ASap segmented neurons into groups based on the first
dimension of their anatomical coordinates, akin to the anterier-posterior axis. FSap employed the
same RG procedures outlined earlier (section 4.12     ).

To determine the overall power-law coefficient of the eigenspectra, α, throughout sampling, we
fitted a straight line in the log-log rank plot to the large eigenvalues that combined the original and
three iterations of sampled covariance matrices (selecting the top 10% eigenvalues for each matrix
and excluding the first four largest ones for each matrix). We averaged the estimated α over 10
repetitions of the entire sampling procedure. R2 of the power-law fit was computed in a similar
way. To visualize the statistical structures of the original and sampled covariance matrices, the
orders of the neurons (i.e. columns and rows) are determined by the following algorithm. We first
construct a symmetric Toeplitz matrix 𝒯, with entries 𝒯i,j = ti−j and ti−j tj−i. The vector

 is equal to the mean covariance vector of each neuron calculated below. Let 

be a row vector of the data covariance matrix; we identify , where D(·) denotes a

numerical ordering operator, namely rearranging the elements in a vector  such that c0 ≥ c1 ≥ …
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≥ cN−1. The second step is to find a permutation matrix P such that ∥ 𝒯 − PCPT ∥F is minimized,
where ∥ ∥F denotes the Frobenius norm. This quadratic assignment problem is solved by simulated
annealing. Note that after sampling, the smaller matrix will appear different from the larger one.
We need to perform the above reordering algorithm for every sampled matrix so that matrices of
different sizes become similar in Fig. 2E     .

The composite covariance matrix with substituted eigenvectors in (Fig. 2H     ) was created as
described in the following steps. First, we generated a random orthogonal matrix Ur (based on the
Haar measure) for the new eigenvectors. This was achieved by QR decomposition A = UrR of a
random matrix A with i.i.d. entries Aij ∼ 𝒩 (0, 1/N). The composite covariance matrix Cr was then
defined as , where Λ is a diagonal matrix that contains the eigenvalues of C. Note that
since all the eigenvalues are real and Ur is orthogonal, the resulting Cr is a real and symmetric
matrix. By construction, Cr and C have the same eigenvalues, but their sampled eigenspectra can
differ.

4.4 Dimensionality
In this section, we introduce the Participation Ratio (DPR) as a metric for effective dimensionality
of a system, based on (25     –29     , 58     ). DPR is defined as:

Here, λi are the eigenvalues of the covariance matrix C, representing variances of neural activities.
Tr(·) denotes the trace of the matrix. The term  denotes the expected value of the squared

elements that lie off the main diagonal of C. This represents the average squared covariance
between the activities of distinct pairs of neurons.

With these definitions, we explore the asymptotic behavior of DPR as the number of neurons N
approaches infinity:

This limit highlights the relationship between the PR dimension and the average squared
covariance among different pairs of neurons. It is worth mentioning that a similar theoretical
finding is established by Dahmen et. al. (29     ). The transition from increasing DPR with N to
approaching the saturation point occurs when N is significantly larger than DPR.

4.5 ERM model
We consider the eigenvalue distribution or spectrum of the matrix C at the limit of N ≫ 1 and L ≫
1. This spectrum can be analytically calculated in both high-density and intermediate-density
scenarios using the replica method (34     ). The following sketch shows our approach, and detailed
derivations can be found in Supp. Note. To calculate the probability density function of the
eigenvalues (or eigendensity), we first compute the resolvent or Stieltjes transform

. Here ⟨…⟩ is the average across the realizations of C (that is, random
 s and  s). The relationship between the resolvent and the eigendensity is given by the

Sokhotski-Plemelj formula:

where Im means imaginary part.
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Here we follow the field-theoretic approach (34     ), which turns the problem of calculating the
resolvent to a calculation of the partition function in statistical physics by using the replica
method. In the limit N → ∞, Ld → ∞, ρ being finite, by performing a leading order expansion of the
canonical partition function at large z (Supp. Note), we find the resolvent is given by

In the high-density regime, the probability density function (pdf) of the covariance eigenvalues can
be approximated and expressed from Equations (6)      and (7)      using the Fourier transform of
the kernel function :

where δ (x) is the Dirac delta function and E(σ2) is the expected value of the variances of neural
activity. Intuitively, Eq. (8)      means that λ / ρ are distributed with a density proportional to the
area of  level sets (i.e., isosurfaces).

In section 2.3     , we found that the covariance matrix consistently shows greater scale invariance
compared to the correlation matrix across all datasets. This suggests that the variability in
neuronal activity significantly influences the eigenspectrum. This finding, however, cannot be
explained by the high-density theory, which predicts that the eigenspectrum of the covariance
matrix is simply a rescaling of the correlation eigenspectrum by , the expected value of the
variances of neural activity. Without loss of generality, we can always standardize the fluctuation
level of neural activity by setting E(σ2)= 1. This is equivalent to multiplying the covariance matrix
C by a constant such that Tr(C)/N = 1, which in turn scales all the eigenvalues of C by the same
factor. Consequently, the heterogeneity of  has no effect on the scale invariance of the

eigenspectrum (see Eq. (8)     ). This theoretical prediction is indeed correct and is confirmed by
direct numerical simulations and quantifying the scale invariance using the CI (Fig. S6A).

Fortunately, the inconsistency between theory and experimental results can be resolved by
focusing the ERM within the intermediate density regime ρ ϵd ≪ 1, where neurons are positioned
at a moderate distance from each other. As mentioned above, we set E(σ2)=1 in our model and
vary the diversity of activity fluctuations among neurons represented by E(σ4). Consistent with the
experimental observations, we find that the CI decreases with E(σ4) (see Fig. S6B). This agreement
indicates that the neural data are better explained by the ERM in the intermediate density regime.

To gain a deeper understanding of this behavior, we use the Gaussian variational method (34     )
to calculate the eigenspectrum. Unlike the high-density theory where the eigendensity has an
explicit expression, in the intermediate density the resolvent g(z) no longer has an explicit
expression and is given by the following equation

where ⟨…⟩σ computes the expectation value of the term within the bracket with respect to σ,
namely ⟨…⟩σ ≡ ∫ …p(σ)dσ. Here and in the following, we denote . The function  is

determined by a self-consistent equation,
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We can solve  from Eq. (10)      numerically and below is an outline, and the details are

explained in Supp. Note. Let us define the integral . First, we substitute z ≡ λ + iη

into Eq. (10)      and write 𝒢 = Re𝒢 + iIm𝒢. Eq. (10)      can thus be decomposed into its real part and
imaginary part, and a set of nonlinear and integral equations, each of which involves both Re𝒢
and Im𝒢. We solve these equations at the limit η → 0 using a fixed-point iteration that alternates
between updating Re𝒢 and Im𝒢 until convergence.

We find that the variational approximations exhibit excellent agreement with the numerical
simulation for both large and intermediate ρ where the high-density theory starts to deviate
significantly (for ρ = 256 and ρ = 10.24, ϵ = 0.03125, Fig. S3). Note that the departure of the leading
eigenvalues in these plots is expected, since the power-law kernel function we use is not integrable
(see section 4.6     ).

To elucidate the connection between the two different methods, we estimate the condition when
the result of the high-density theory (Eq. (8)     ) matches that of the variational method (Equations
(9     ) and (10     )) (Supp. Note). The transition between these two density regimes can also be
understood (see section 4.8.1      and Supp. Note).

Importantly, the scale invariance of the spectrum at µ/d → 0 previously derived using the high-
density result (Eq. (3)     ) can be extended to the intermediate-density regime by proving the ρ -
independence using the variational method (Supp. Note).

Finally, using the variational method and the integration limit estimated by simulation (see section
4.7.2     ), we show that the heterogeneity of the variance of neural activity, quantified by E(σ4),
indeed improves the collapse of the eigenspectra for intermediate ρ (Supp. Note). Our theoretical
results agree excellently with the ERM simulation (Fig. S6A, B).

4.6 Kernel function
Throughout the paper, we have mainly considered a particular approximate power-law kernel
function inspired by the Student’s t distribution (section 2.2     )

To understand how to choose ϵ and µ, see section 4.8.1     . Variations of Eq. (11)      near x =0 have
also been explored; see a summary in table S3     .

It is worth mentioning that a power law is not the only slow decaying function that can produce a
scale-invariant covariance spectrum (Fig. S5). We choose it for its analytical tractability in
calculating the eigenspectrum. Importantly, we find numerically that the two contributing factors
to scale invariance – namely, slow spatial decay and higher functional space – can be generalized
to other nonpower-law functions. An example is the stretched exponential function 

with 0 < η < 1. When η is small and d is large, the covariance eigenspectra also display a similar
collapse upon random sampling (Fig. S5).

This approximate power-law  has the advantage of having an analytical expression for its

Fourier transform, which is crucial for the high-density theory (Eq. (8)     ),
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Table S3.

Modifications of the shape of  near  used in Fig. S7, Fig. S8 and Fig. S9.

Flat: when . Tangent: when  follows a tangent line of the exact power law 

and  have a same first-order derivative when . c is a constant. Tent: when  follows a

straight line while the slope is not the same as the tangent case. Parabola: when  follows a quadratic

function (ax2 +1 and  have same first-order derivative). t pdf: mimic the smoothing treatment like the t distribution. All

the constant parameters are set such that f (0) = 1.
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Here Kα (x) is the modified Bessel function of the second kind, and r(x) is the Gamma function. We
calculated the above formulas analytically for d = 1, 2, 3 with the assistance of Mathematica and
conjectured the case for general dimension d, which we confirmed numerically for d ≤ 10.

We want to explain two technical points relevant to the interpretation of our numerical results
and the choice of . Unlike the case in the usual ERM, here we allow  to be non-integrable
(over ℝd), which is crucial to allow power law . The nonintegrability violates a condition in the

classical convergence results of the ERM spectrum (59     ) as N → ∞. We believe that this is exactly
the reason for the departure of the first few eigenvalues from our theoretical spectrum (e.g., in
Fig. 3     ). Our hypothesis is also supported by ERM simulations with integrable  (Fig. S4),
where the numerical eigenspectrum matches closely with our theoretical one, including the
leading eigenvalues. For ERM to be a legitimate model for covariance matrices, we need to ensure
that the resulting matrix C is positive semidefinite. According to the Bochner theorem (60     ), this
is equivalent to the Fourier transform (FT) of the kernel function  being nonnegative for all

frequencies. For example, in 1D, a rectangle function  does not meet the

condition , but a tent function  does (its FT is

sinc2(x)). For the particular kernel function  in Eq. (11)     , this condition can be easily verified
using the analytical expressions of its Fourier transform (Eq. (12)     ). The integral expression for
Kα (x), given as , shows that Kα (x) is positive for all x> 0. Likewise,

the Gamma function Γ (x) > 0. Therefore, the Fourier transform of Eq. (11)      is positive and the
resulting matrix C (of any size and values of  is guaranteed to be positive definite.

Building upon the theory outlined above, numerical simulations further validated the empirical
robustness of our ERM model, as showcased in Fig. 3B-D      and Fig. 4A     . In Fig. 3B-D     , the ERM
was characterized by the parameters N = 1024, d = 2, L = 10, ρ = 10.24 and µ = 0.5 and ϵ = 0.03125
for . To numerically compute the eigenvalue probability density function, we generated the

ERM 100 times, each sampled using the method described in section 4.3     . The probability
density function (pdf) was computed by calculating the pdf of each ERM realization and averaging
these across the instances. The curves in Fig. 3D      showed the average of over 100 ERM
simulations. The shaded area (most of which is smaller than the marker size) represented the SEM.
For Fig. 4A     , the columns from left to right were corresponded to µ = 0.5, 0.9, 1.3, and the rows
from top to bottom were corresponded to d = 1, 2, 3. Other ERM simulation parameters: N = 4096, ρ
= 256, L = (N/ρ)1/d, ϵ = 0.03125 and . It should be noted that for Fig. 4A     , the presented data
pertain to a single ERM realization.

4.7 Collapse index (CI)
Motivated by the high-density theory in the ERM (Eq. (3)     ), we quantify the extent of scale
invariance using CI defined as the area between two spectrum curves (Fig. 4A      upper right):

we set q1 such that λ (q1)= 1, which is the mean of the eigenvalues of a normalized covariance
matrix. The other integration limit q0 is set to 0.01 such that λ (q0) is the 1% largest eigenvalue.

Here we provide numerical details on calculating CI for the ERM simulations and experimental
data.
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4.7.1 A calculation of collapse index for experimental datasets/ERM model

To calculate CI for a covariance matrix C of size N0, we first computed its eigenvalues  and those
of the sampled block Cs of size Ns = N0/2, denoted as  (averaged over 20 times for the ERM

simulation and 2000 times in experimental data). Next, we estimated log λ (q) using the
eigenvalues of C0 and Cs at q = i/Ns, i = 1, 2,…, Ns. For the sampled Cs, we simply had

, its i-th largest eigenvalue. For the original C0, log λ (q = i/Ns) was estimated
by a linear interpolation, on the log λ-log q scale, using the value of log λ (q) in the nearest
neighboring q = i/N0’s (which again are simply log ). Finally, the integral (Eq. (13)     ) was

computed using the trapezoidal rule, discretized at q = i/Ns’ s, using the finite difference
, where Δ denotes the difference between the original eigenvalues of C0

and those of sampled Cs.

4.7.2 Estimating CI using the variational method

In the definition of CI (Eq. (13)     , calculating λ (q) and  directly using the variational

method is difficult, but we can make use of an implicit differentiation

where  is the complementary cdf (the inverse function of λ (q) in section
4.7.1     ). Using this, the integral in CI (Eq. (13)     ) can be rewritten as

Since , we switch the order of the integration interval in the final expression of Eq.
(15)     .

First, we explain how to compute the complementary cdf q(λ) numerically using the variational
method. The key is to integrate the probability density function p(λ) from λ to a finite λ (qs) rather
than to infinity,

The integration limit λ (qs) cannot be calculated directly using the variational method. We thus
used the value of λs(qs ≈ q0) (section 4.7     ) from simulations of the ERM with a large N = 1024 as
an approximation. Furthermore, we employed a smoothing technique to reduce bias in the
estimation of λs(qs) due to the leading zigzag eigenvalues (i.e., the largest eigenvalues) of the
eigenspectrum. Specifically, we determined the nearest rank j < Nq0 and then smoothed the

eigenvalue log λs(qs) on the log-log scale using the formula  and

, averaging over 100 ERM simulations.
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Note that we can alternatively use the high-density theory (Supp. Note) to compute the integration
limit λ (qs = 1/N) instead of resorting to simulations. However, since the true value deviates from
the λh(qs = 1/N) derived from high-density theory, this approach introduces a constant bias (Fig. S6)
when computing the integral in Eq. (16)     . Therefore we used the simulation value λs(qs ≈ q0)
when producing Fig. S6AB.

Next, we describe how each term within the integral of Eq. (15)      was numerically estimated.
First, we calculated  with a similar method described in section 4.7.1     . Briefly, we

calculated q0(λ) for density  and qs(λ) for density , and then used the finite

difference . Second,  was evaluated at , where i = 0, 1,

2,…,k − 1, and we used k = 20. Finally, we performed a cubic spline interpolation of the term ,

and obtained the theoretical CI by an integration of Eq. (15)     . Fig. S6A,B shows a comparison
between theoretical CI and that obtained by numerical simulations of ERM (section 4.7.1     ).

4.8 Fitting ERM to data

4.8.1 Estimating the ERM parameters

Our ERM model has 4 parameters: µ and ϵ dictate the kernel function , whereas the box size L
and the embedding dimension d determine the neuronal density ρ. In the following, we describe
an approximate method to estimate these parameters from pairwise correlations measured
experimentally . We proceed by deriving a relationship between the correlation

probability density distribution h(R) and the pairwise distance probability density distribution
 in the functional space, from which the parameters of the ERM can be

estimated.

Consider a distribution of neurons in the functional space with a coordinate distribution . The

pairwise distance density function g(u) is related to the spatial point density by the following
formula:

For ease of notation, we subsequently omit the region of integration, which is the same as here. In
the case of a uniform distribution, . For other spatial distributions, Eq.
(17)      cannot be explicitly evaluated. We therefore make a similar approximation by focusing on
a small pairwise distance (i.e., large correlation):

By a change of variables:

Eq. (17)      can be rewritten as

where Sd−1(u) is the surface area of d − 1 sphere with radius u.
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With the approximate power-law kernel function , the probability density function
of pairwise correlation h(R) is given by:

Taking the logarithm on both sides

Eq. (21)      is the key formula for ERM parameters estimation. In the case of a uniform spatial
distribution, . For a given dimension d, we can therefore estimate µ

and (ϵ/L)d separately by fitting h(R) on the log-log scale using the linear least squares. Lastly, we fit
the distribution of σ2 (the diagonal entries of the covariance matrix C) to a log-normal distribution
by estimating the maximum likelihood.

There is a redundancy between the unit of the functional space (using a rescaled ϵδ ϵ/δ) and the
unit of  (using a rescaled ), thus ϵ and L are a pair of redundant parameters:
once ϵ is given, L is also determined. We set ϵ = 0.03125 throughout the article. In summary, for a
given dimension d and ϵ, µ of  (Eq. (11)     ), the distribution of σ2 (section 2.2     ) and ρ (or

equivalently L) (section 2.2     ) can be fitted by comparing the distribution of pairwise
correlations in experimental data and ERM. Furthermore, knowing (ϵ/L)d enables us to determine
a fundamental dimensionless parameter

which tells us whether the experimental data are better described by the high-density theory or
the Gaussian variational method (Supp. Note). Indeed, the fitted ρ ϵ ∼d 10−3 − 100 is much smaller
than 1, consistent with our earlier conclusion that neural data are better described by an ERM
model in the intermediate-density regime.

Notably, we found that a smaller embedding dimension d ≤5 gave a better fit to the overall
pairwise correlation distribution. The following is an empirical explanation. As d grows, to best fit
the slope of log h(R) − log R, µ will also grow. However, for very high dimensions d, the y-intercept
would become very negative, or equivalently, the fitted correlation would become extremely
small. This can be verified by examining the leading order log R independent term in Eq. (21)     ,
which can be approximated as . It becomes very negative for large d

since ϵ ≪ L by construction. Throughout this article, we use d =2 when fitting the experimental
data with our ERM model.

The above calculation can be extended to the cases where the coordinate distribution 

becomes dependent on other parameters. To estimate the parameters in coordinate distributions
that can generate ERMs with a similar pairwise correlation distribution (Fig. S9), we fixed the
integral value . Consider, for example, a transformation of the uniform coordinate
distribution to the normal distribution  in ℝ2. We imposed

. For the log-normal distribution, a similar calculation led to

. The numerical values for these parameters are shown in section 4.10     .
However, note that due to the approximation we used (Eq. (18)     ), our estimate of the ERM
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parameters becomes less accurate if the density function  changes rapidly over a short
distance in the functional space. More sophisticated methods, such as grid search, may be needed
to tackle such a scenario.

After determining the parameters of the ERM, we first examine the spectrum of the ERM with
uniformly distributed random functional coordinates  (Fig. S10M-R). Second, we use

 to translate experimental pairwise correlations into pairwise distances for all neurons in the
functional space (Fig. S11, Fig. S10G-L). The embedding coordinates  in the functional space can

then be solved through Multidimensional Scaling (MDS) by minimizing the Sammon error (section
4.8.3     ). The similarity between the spectra of the uniformly distributed coordinates (Fig. S10M-R)
and those of the embedding coordinates (Fig. S10G-L) is also consistent with the notion that
specific coordinate distributions in the functional space have little impact on the shape of the
eigenspectrum (Fig. S9).

4.8.2 Nonnegativity of data covariance

To use ERM to model the covariance matrix, the pairwise correlation is given by a non-negative
kernel function  that monotonically decreases with the distance between neurons in the
functional space. This nonnegativeness brings about a potential issue when applied to
experimental data, where, in fact, a small fraction of pairwise correlations/covariances are
negative. We have verified that the spectrum of the data covariance matrix (Fig. S18) remains
virtually unchanged when replacing these negative covariances with zero (Fig. S18). This confirms
that the ERM remains a good model when the neural dynamics is in a regime where pairwise
covariances are mostly positive (50     ) (see also Fig. S2B, Fig. S2B-D).

4.8.3 Multidimensional Scaling (MDS)

With the estimated ERM parameters (μ in  and the box size L for given ϵ and d, see section
4.8.1     ), we performed MDS to infer neuronal coordinates  in functional space. First, we
computed a pairwise correlation  from the data covariances. Next, we calculated the

pairwise distance, denoted by , by computing the inverse function of  with respect to the
absolute value of . We used the absolute value |Rij | instead of Rij as a small

percentage of Rij are negative (Fig. S2A-D) where the distance is undefined. This substitution by the
absolute value serves as a simple workaround for the issue and is only used here in the analysis to
infer the neuronal coordinates by MDS. Finally, we estimated the embedding coordinates  for

each neuron by the SMACOF algorithm (Scaling by MAjorizing a COmplicated Function), which
minimizes the Sammon error

where  is the pairwise distance in the embedding space calculated above.

To reduce errors at large distances (i.e., small correlations with Rij < f(L), where L is the estimated
box size), we performed a soft cut-off at a large distance:

During the optimization process, we started at the embedding coordinates estimated by the
classical MDS (45     ), with an initial sum of squares distance error that can be calculated directly,
and ended with an error or its gradient smaller than 10−4.
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The fitted ERM with the embedding coordinates  reproduced the experimental covariance
matrix including the cluster structures (Fig. S11) and its sampling eigenspectra (Fig. S10).

4.9 Canonical-Correlation Analysis (CCA)
Here we briefly explain the CCA method (61     ) for completeness. The basis vectors  and

, in functional and anatomical space, respectively, were found by maximizing the correlation
. These basis vectors satisfy the condition that the projections

of the neuron coordinates along them,  and , are maximally correlated
among all possible choices of  and . Here  represent the coordinates in

functional and anatomical spaces, respectively. The resulting maximum correlation is RCCA. To
check the significance of the canonical correlation, we shuffled the functional space coordinates

 across neurons’ identity and re-calculated the canonical correlation with the anatomical
coordinates, as shown in Fig. S13.

To study the effect of functional-anatomical relation described by RCCA in the ERM model, we
generated three dimensional anatomical coordinates  and two dimensional functional

coordinates  for each neuron which are jointly five-dimensional zero-mean multivariate
Gaussian random variables. The coordinates are independent among each other, except for the
first dimension  of the functional coordinates and the first dimension , which are
assigned to have a correlation coefficient equals to RCCA. The variances of the coordinates are

 and  for the numerics in Fig. S21. Under this construction, the

first canonical correlation between the anatomical and functional coordinates equals RCCA, and
the first canonical direction  in the anatomical space is (1, 0, 0)T and the first canonical
direction  in the functional space is (1, 0)T.

4.10 Extensions of ERM and factors
not affecting the scale invariance
In Fig. S9 we considered five additional types of spatial density distributions (coordinate
distributions) in functional space and two additional functional space geometries. We examined
the points distributed according to the uniform distribution , the normal distribution

, and the log-normal distribution . We used the method described

in Methods section 4.8.1      to adjust the parameters of the coordinate distributions based on the
uniform distribution case, so that they all generate similar pairwise correlation distributions. The
relationships between these parameters are described in Methods section 4.8.1     . In Fig. S9B, we
used the following parameters: d = 2; L = 10 for the uniform distribution; µp = 0, σp = 2.82 for the
normal distribution; and µp = 2, σp = 0.39 for the log-normal distribution.

Second, we introduced multiple clusters of neurons in the functional space, with each cluster
uniformly distributed in a box. We considered three arrangements: (1     ) two closely situated
clusters (with a box size of  the distance between two cluster centers being Lc = L), (2     )
two distantly situated clusters (with a box size of  and the distance between clusters Lc =
4L), and three clusters arranged symmetrically in an equilateral triangle (with a box size of

 and the distance between clusters Lc = L).

Finally, we examined the scenario in which the points were uniformly distributed on the surface
of a sphere (4πl2 = L2, l being the radius of the sphere) or a hemisphere (2πl2 = L2) embedded in ℝ3

(the pairwise distance is that in ℝ3). It should be noted that both cases have the same surface area
as the 2D box.

https://doi.org/10.7554/eLife.100666.1


Zezhen Wang et al., 2025 eLife. https://doi.org/10.7554/eLife.100666.1 29 of 44

4.11 Analyzing the effects of removing
neural activity data during hunting
To identify and remove the time frames corresponding to putative hunting behaviors, the
following procedure was used. The hunting interval was defined as 10 frames (1 sec) preceding the
onset of an eye convergence (see Methods section 4.1.1     ) to 10 frames after the offset of this eye
convergence. These frames were then excluded from the data before recalculating the covariance
matrix (see Methods section 4.3     ) and subsequently the sampled eigenspectra (Fig. S15B, Fig.
S16B,D,F,H). As a control to the removal of the hunting frame, an equal number of time frames
that are not within those hunting intervals were randomly selected and then removed and
analyzed (Fig. S15C, Fig. S16A,C,E,G). The number of hunting interval frames and total recording
frames for five fish exhibiting hunting behaviors are as follows: fish 1 - 268/7495, fish 2 - 565/9774,
fish 3 - 2734/13904, fish 4 - 843/7318 and fish 5 - 1066/7200. Fish 6 (number of time frames: 9388)
was not exposed to a prey stimulus and, therefore, was excluded from the analysis.

To assess the impact of hunting removal on CI, we calculated the CI of the covariance matrix using
all neurons recorded in each fish (without sampling to 1024 neurons). For the control case, we
repeated the removal of the nonhunting frame 10 times to generate 10 covariance matrices and
computed their CIs. We used a one-sample t-test to determine the level of statistical significance
between the control CIs and the CI obtained after removal of the hunting frame.

Using fitted ERM parameters by full data, we performed a MDS on the control data and hunting-
removed data to infer the functional coordinates. Note that the functional coordinates inferred by
MDS are not unique: rotations and translations give equivalent solutions. For visualization
purposes (not needed for analysis), we first used the Umeyama algorithm to optimally align the
functional coordinates of control and hunting-removed data.

To identify distinct clusters within the functional coordinates, we fit Gaussian Mixture Models
(GMMs) using the “GaussianMixtures” package in Julia. We chose the number of clusters K based
on giving the smallest Bayesian Information Criterion (BIC) score. After fitting the GMMs, a list of
probabilities pik, k = 1, 2,…,K was given for each neuron i specifying the probability of the neuron
belonging to the cluster k. The mean and covariance parameters were estimated for each Gaussian
distributed cluster. For visualization (but not for analysis), a neuron was colored according to
cluster k* where k* = argmax1≤k≤K pik.

We used the following method to measure the size of the cluster and its fold change. For a 2D
(recall d =2 in our ERM) Gaussian distributed cluster, let us consider an ellipse centered on its
mean, and its axes are aligned with the eigenvectors of its covariance matrix C2×2. Let the
eigenvalues of C be λ1, λ2. Then we set the length of the half-axis of the ellipse to be ,
respectively. Here c> 0 is a constant determined below. Note that the ellipse axes correspond to
linear combinations of 2D Gaussian random variables that are independent and λi’s are the
variance of these linear combinations. From this fact, it is straightforward to show that the
probability that a sample from the Gaussian cluster lies in the above ellipse depends only on c,
that is, , and not on the shape of the cluster. So, the ellipse represents a region that covers a

fixed proportion of neurons for any cluster, and its area can be used as a measure for the size of
the Gaussian cluster. Note that the area of the ellipse is . In Fig. S17, we

plot the ellipses to help visualize the clusters and their changes. We choose c such that the ellipse
covers 95% of the probability (that is, the fraction of neurons belonging to the cluster).

In the control functional map where we fit the GMMs, we directly calculated the size measure
 from the estimated covariance C for each Gaussian cluster. In the hunting-removed

functional map, we needed to estimate the covariance C′ for neurons belonging to a cluster k
under the new coordinates (we assume that the new distribution can still be approximated by a
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Gaussian distribution). We performed this estimation in a probabilistic manner to avoid issues of
highly overlapping clusters where the cluster membership could be ambiguous for some neurons.
First, we estimated the center/mean of the new Gaussian distribution by

Here the summation goes over all the N neurons in the functional space and pik is the membership
probability defined above, and (xi, yi) is the coordinate of neuron i in the hunting-removed map.
Similarly, we can use a weighted average to estimate the entries in the covariance matrix

. For example,

Then we calculated the size of the cluster on the new map as . Finally, we computed the

fold change in size as .

4.12 Renormalization-Group (RG) Approach
Here we briefly summarize the RG approach used in (20     ) and elucidate the adjustments
required when applying the RG approach to ERM. The method consists of two stages: (i) iterative
agglomerate clustering of neurons, and (ii) computing the spectrum of a block of the original
covariance matrix corresponding to a cluster of the desired size based on the previous clustering
result.

During each iterative coarse-graining procedure denoted k, Pearson’s correlation coefficients for
each pair of neurons are calculated. This yields the maximum correlated pair, designated as a and
b. These pairs are combined according to the following equation:

 is used to normalize the average to ensure that the nonzero activity of the new variables 

is equal to one.

When the RG approach is applied directly to the ERM, the process differs slightly. Instead of
combining neural activity, we merge correlation matrices to traverse different scales. During the
kth iteration, we compute the coarse-grained covariance as

and the variance as

Following these calculations, we normalize the coarse-grained covariance matrix to ensure that all
variances are equal to one. Note these coarse-grained covariances are only used in stage (i) and
note used to calculate the spectrum.
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In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster
sizes as described in (20     ). Let N0 = 2n be the original number of neurons. To reduce it to size N =
N0/2k = 2n−k, consider the coarse-grained neurons in step n − k in stage (i). Each coarse-grained
neuron is a cluster of 2n−k neurons. We then calculate spectrum of the block of the original
covariance matrix corresponding to neurons of each cluster (there are 2k such blocks). Lastly, an
average of these 2k spectra is computed.

To illustrate the RG approach, consider a hypothetical scenario where a set of eight neurons,
labeled 1, 2, 3, …, 7, 8, are subjected to a two-step clustering procedure. In the first step, neurons
are grouped based on their maximum correlation pairs, resulting in the formation of four pairs:
{1, 2 }, {3, 4 }, {5, 6 }, and {7, 8 }. Subsequently, the neurons are further grouped into two clusters
based on the results of the RG step mentioned above. Specifically, if the correlation between the
coarse-grained variables of the pair {1, 2 } and the pair {3, 4 } is found to be the largest among all
other pairs of coarse-grained variables, the first group consists of neurons {1, 2, 3, 4 }, while the
second group contains neurons {5, 6, 7, 8 }. Next, take the size of the cluster N =4 for example. The
eigenspectra of the covariance matrices of the four neurons within each cluster are computed.
This results in two eigenspectra, one for each cluster. The correlation matrices used to compute
the eigenspectra of different sizes do not involve coarse-grained neurons. It is the real neurons 1,
2, 3, …, 7, 8, but with expanding cluster sizes. Finally, the average of the eigenspectra of the two
clusters is calculated.

4.13 Spectrum of three types of sampling procedures in ERM model
In section 2.4      we have considered three types of sampling procedures: random sampling (RSap),
spatial sampling in the anatomical space (ASap, e.g., recording neurons in a brain region), and
spatial sampling in the functional space (FSap), namely spatial sampling in functional space by
subdividing the space into smaller regions, is equivalent to the previously reported
renormalization group (RG) inspired process (62     , 63     ). Here we consider the relationship
between the spectrum of three types of sampling procedures.

We assume a uniform random distribution of neurons in a d-dimensional functional space, [0, L]d.
For RSap procedures, the resulting neuronal density ρR is reduced to ρR = kρ0, with k representing
the sampling ratio (k = N/N0) and ρ0 being the initial density. In contrast, FSap maintains the
original density, ρF = ρ0. This constancy in neuronal density under FSap ensures that the
covariance eigenspectrum remains invariant across scales for any spatial correlation functions

, such as power law and exponential, as shown in Fig. S19A,B,D,E. In contrast, RSap reduces ρ,
thus demanding more rigorous conditions to achieve a scale-invariant covariance spectrum (e.g.,
compare Fig. S19A and C).

Under ASap, sampled neurons are not spread out evenly in functional space, whereas our
theoretical framework assumes a uniform distribution. To reconcile this discrepancy, we employ a
uniform approximation of the neural distribution. This approach involves introducing an effective
density, ρ ′, defined as the spatial average of the density function . This adjustment allows our

theoretical model to accommodate non-uniform distributions encountered in anatomically spatial
sampling.

where  is the normalized density distribution (see Methods section 4.8.1     ).

https://doi.org/10.7554/eLife.100666.1


Zezhen Wang et al., 2025 eLife. https://doi.org/10.7554/eLife.100666.1 32 of 44

using the Cauchy-Schwarz inequality, we have

thus ρ′ ≥ kρ0.

According to the condition , we have ρ′ ≤ ρ0, intuitively, sampling within a uniformly

distributed neuron population does not increase the density.

So we have ρ0 ≥ ρ′ A ≥ kρ0, i.e., ρF ≥ ρ′ A ≥ ρR. Thus the spectrum ASap should be between FSap and
RSap.

4.14 Dimensions of three types of
sampling procedures in ERM model

4.14.1 Scaling of Dimensions through Random Sampling

Let us revisit the definition of the Participation Ratio (PR) dimension as defined in Equation Eq.
(5)     :

During the random sampling process, the expected values E(σ2), E(σ4), and  remain

constant.

These constants allow for the estimation of the PR dimension across various scales using:

Here, k = N/N0 represents a scaling factor (fraction) associated with sampling. The key question is
to understand how the dimensionality changes with k. Under random sampling, as k increases, the
dimensionality will quickly approaches a saturating point defined by Eq. (1)     .

4.14.2 Scaling of Dimensions through Functional Sampling

In this section, we leverage the uniform ERM model to estimate dimensions within the context of
functional sampling, specifically focusing on the estimation of squared pairwise covariance

 and dimensionality.

Adopting an approximation for a power-law kernel function f (x) ≈ ϵμ ∥x∥−µ allows us to express
the expected value of the squared covariance  as follows:
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For a set subjected to functional sampling with a sampling fraction k, this procedure adjusts the
size of the functional space in the ERM model by a factor of k−1/d. Consequently, the  for

the sampled fraction k is given by:

Here we assume that E[σ2] and E[σ4] are constant across the sampling process. This model enables
the estimation of the ratio µ/d as detailed in the Methods section 4.8.1     .

In the large N limit, we observe distinct behaviors in the evolution of dimensionality in both
theory and data: it saturates in RSap (dashed line in Fig. 5D     ), namely  defined in Eq.
(1)     , whereas it follows a different scaling relationship  in FSap (solid line in Fig.
5D     ).

4.14.3 Comparative Analysis of PR Dimension Across sampling Techniques

This section examines the behavior of the Participation Ratio (PR) dimension under three
sampling techniques: anatomical sampling, random sampling, and functional sampling. We show
that the average PR dimension following anatomical sampling occupies a middle ground between
the extremes presented by random and functional sampling.

The PR dimension, denoted DPR, reflects the sampling impact and depends on the distribution
 of the functional coordinates . Defining the sampling fraction as k = 1/q, the mean DPR is

represented as:

where the neuron set 1, 2, …,N is segmented into q clusters , each comprising 

neurons.

The probability distribution  corresponds to each cluster . The probability distribution

for each cluster, , emerges naturally from the sampling process.

The equivalence of the mean probability density function across the sampled clusters to the
original set’s probability density function leads us to the condition:
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This condition is a direct consequence of the sampling process, ensuring that the aggregated
probability density function of all sampled sets mirrors the overall density distribution of the
neurons.

Applying the Lagrange multiplier method to optimize the mean DPR:

Here L(p, λ) is the Lagrangian,  is the Lagrange multiplier, we derive the optimal condition:

yielding:

At the optimal mean DPR, each  is equivalent, leading to 

(representative of random sampling). Hence, the mean DPR post-random sampling sets the upper
limit for the mean DPR after anatomical sampling.

Let us investigate the lower bound of the mean PR dimension with the ERM model. For the
minimization of mean(DPR), a key requirement is the functional spatial proximity of neurons
within the same cluster, in other word, the neuron set should be distinctly separated in functional
space. Consequently, achieving the minimum mean PR dimension necessitates a functional
sampling strategy.

4.14.4 Simulating CCA and anatomical sampling

In this section, we estimate the dimensions of the anatomically sampled neuron set. For simplicity,
we assume that the functional coordinates of neurons, Xi, and the anatomical coordinates of
neurons, Yi, both follow a multivariate Gaussian distribution. We define anatomical sampling,
which involves sampling on Yi, along a direction chosen arbitrarily and denote this direction as Y
A. Subsequently, we perform sampling on Xi in the direction denoted by XA, which is determined to
have the highest correlation with Y A according to Canonical Correlation Analysis (CCA). This
process effectively mimics the scenario of functional sampling.

The key to calculating the PR dimension involves computing the expected value . In the

ERM model, the distribution of Cij can be estimated by the distribution of points in the functional
space. This allows for the calculation of the PR dimension across anatomical sampling by
comparing the distribution of Xi after anatomical sampling with that after functional sampling.

To approximate, we need to calculate the functional coordinate probability distribution
, which is the distribution of the ith neuron cluster after anatomical

sampling. Here,  and  denote the functional and anatomical coordinates of the ith neuron
cluster after anatomical sampling, respectively. Y C represents the selected direction in anatomical
space, and  denotes the ikth quantile of Y C, where k is the sampled fraction.

We consider only the projection of the functional coordinate onto the direction XA, which exhibits
the highest correlation, denoted by RASap, with Y A. Specifically, when selecting the anatomical
direction as the first CCA direction, the correlation between XA and Y A reaches its maximum, such
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that RASap = RCCA. In this case, anatomical sampling results in the minimization of the
dimensionality. Note the following relationships and distributions:

The conditional probability distribution  is equivalent to the distribution of

the sum of  and X0, where :

The distribution of  is represented by a non-elementary function, complicating direct analysis.

To facilitate approximation, we model  using a normal distribution with equivalent variance.

Although calculating the variance of  directly presents challenges, assuming a uniform

distribution for Y simplifies this task. Under this assumption, the variance of  can be

straightforwardly calculated as . Consequently, we approximate  and  as

follows:

Calculating the PR dimension directly from the distribution of  is difficult; thus, we

approximate anatomical sampling with fraction k as functional sampling with fraction kf, leading
to:
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Using the equation for functional sampling  (Eq. (32)     ):
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Joint Public Reviews:

Summary:

The authors examine the eigenvalue spectrum of the covariance matrix of neural recordings
in the whole-brain larval zebrafish during hunting and spontaneous behavior. They find that
the spectrum is approximately power law, and, more importantly, exhibits scale-invariance
under random subsampling of neurons. This property is not exhibited by conventional
models of covariance spectra, motivating the introduction of the Euclidean random matrix
model. The authors show that this tractable model captures the scale invariance they
observe. They also examine the effects of subsampling based on anatomical location or
functional relationships. Finally, they briefly discuss the benefit of neural codes which can be
subsampled without significant loss of information.

Strengths:

With large-scale neural recordings becoming increasingly common, neuroscientists are faced
with the question: how should we analyze them? To address that question, this paper
proposes the Euclidean random matrix model, which embeds neurons randomly in an
abstract feature space. This model is analytically tractable and matches two nontrivial
features of the covariance matrix: approximate power law scaling, and invariance under
subsampling. It thus introduces an important conceptual and technical advance for
understanding large-scale simultaneously recorded neural activity.

Weaknesses:

https://doi.org/10.7554/eLife.100666.1
http://orcid.org/0000-0003-0790-1605
http://orcid.org/0000-0003-0268-8403
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The downside of using summary statistics is that they can be hard to interpret. Often the
finding of scale invariance, and approximate power law behavior, points to something
interesting. But here caution is in order: for instance, most critical phenomena in neural
activity have been explained by relatively simple models that have very little to do with
computation (Aitchison et al., PLoS CB 12:e1005110, 2016; Morrell et al., eLife 12, RP89337,
2014). Whether the same holds for the properties found here remains an open question.

https://doi.org/10.7554/eLife.100666.1.sa1

Author response:

We are grateful for the thorough and constructive feedback provided on our manuscript.

Regarding the main concern about power law behavior and scale invariance, we would like
to clarify that our study does not aim to establish criticality. Instead, we focus on describing
and understanding a specific scale-invariant property: the collapsed eigenspectra in neural
activity under random sampling. Indeed, we tested Morrell et al.’s latent-variable model
(eLife 12, RP89337, 2024, [1]), where a slowly varying latent factor drives population activity.
Although it produces a seemingly power-law-like spectrum, random sampling does not
replicate the strict spectral collapse observed in our data (second row in Author response
image 1). This highlights that simply adding latent factors does not fully recapitulate the scale
invariance we measure, suggesting richer or more intricate processes may be involved in real
neural recordings.

Author response image 1.

Morrell et al.’s latent variable model [1, 2]. A-D: Functional sampled (RSap) eigenspectral of
the Morrell et al. model. E-H: Random sampled (RSap) eigenspectra of the same model.
Briefly, in Morrell et al.’s latent variable model [1, 2], neural activity is driven by Nf latent
fields and a place fields. The latent fields are modeled as Ornstein-Uhlenbeck processes with
a time constant τ . The parameters ϵ and η control the mean and variance of individual
neurons’ firing rates, respectively. The following are the parameter values used. A,E: Using
the same parameters as in [1]: Nf = 10, ϵ = −2.67, η = 6, τ = 0.1. Half of the cells are also coupled
to the place field. B,C,D,F,G,H: Using parameters from [2]: Nf = 5, ϵ = −3, η = 4. There is no place
field. The time constant τ = 0.1, 1, 10 for B,F, C,G, and D,H, respectively.

We decided to make 5 key revisions.

https://doi.org/10.7554/eLife.100666.1
https://doi.org/10.7554/eLife.100666.1.sa1
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As mentioned, we have evaluated the latent variable model proposed by Morrell et al.
and found that they fail to reproduce the scale-invariant eigenspectra observed in our
data; these results will be presented in the Discussion section and supported by a new
Supplementary Figure.

We will include a discussion on the findings of Manley et al. (2024, [2]) regarding the
issue of saturating dimensionality in the Discussion section, highlighting the
methodological differences and their implications.

We will add a new mathematical derivation in the Methods section, elucidating the
bounded dimensionality using the spectral properties of our model.

We will elaborate in the Discussion section to further emphasize the robustness of our
findings by demonstrating their consistency across diverse datasets and experimental
techniques.

We will incorporate a brief discussion on the implications for neural coding. In
particular, Fisher information can become unbounded when the slope of the power-
law rank plot is less than one, as highlighted in the recent work by Moosavi et al.
(bioRxiv 2024.08.23.608710, Aug, 2024 [3]) in the Discussion section.

We believe these revisions will address the concerns raised by you and collectively
strengthen our manuscript to provide a more comprehensive and robust understanding of
the geometry and dimensionality of brain-wide activity.
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