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SUMMARY

Odor perception allows animals to distinguish
odors, recognize the same odor across concentra-
tions, and determine concentration changes. How
the activity patterns of primary olfactory receptor
neurons (ORNs), at the individual and population
levels, facilitate distinguishing these functions re-
mains poorly understood. Here, we interrogate the
complete ORN population of the Drosophila larva
across a broadly sampled panel of odorants at vary-
ing concentrations. We find that the activity of each
ORN scales with the concentration of any odorant
via a fixed dose-response function with a variable
sensitivity. Sensitivities across odorants and ORNs
follow a power-law distribution. Much of receptor
sensitivity to odorants is accounted for by a single
geometrical property of molecular structure. Simi-
larity in the shape of temporal response filters
across odorants and ORNs extend these relation-
ships to fluctuating environments. These results
uncover shared individual- and population-level
patterns that together lend structure to support
odor perceptions.

INTRODUCTION

The ability to identify odorants across a wide range of concentra-

tions and detect changes in odorant concentration are essential

for olfactory perception and behavior. How olfactory representa-

tions are organized to support these distinct functions is not yet

fully understood. In mammalian and insect olfactory systems,

combinatorial receptor codes allow a limited number of olfactory

receptor neurons (ORNs) to encode a large number of odorants

(Malnic et al., 1999). Each ORN typically expresses one olfactory

receptor (Or) type (Buck and Axel, 1991), but a single Or can be

activated by many odorants and a single odorant can activate

many Ors (Friedrich and Korsching, 1997). Different odorants

can be discriminated by distinct activity patterns across a popu-

lation of olfactory neurons (Hallem and Carlson, 2006; Kreher

et al., 2008; Nara et al., 2011). TheOr code also conveys informa-

tion about odorant intensity, as odorants at higher concentra-

tions typically activate more ORNs (Kajiya et al., 2001; Wang

et al., 2003). Odorants may also evoke different temporal

response patterns in ORNs, augmenting information coding us-

ing time (de Bruyne et al., 2001; Friedrich and Laurent, 2001;

Grillet et al., 2016; Junek et al., 2010; Raman et al., 2010).

Behavioral experiments in mammals and insects indicate

that animals can distinguish and learn differences between

odor identities and concentrations (Apostolopoulou et al.,

2013; Chen et al., 2011; Mishra et al., 2013; Pelz et al., 1997;

Uchida and Mainen, 2008; Wang et al., 2004). Thus, olfactory

perception likely requires the ability to independently represent

both odor identity and intensity. Distinct and invariant represen-

tations of odor identity and intensity appear in neurons in central

olfactory processing regions (Bolding and Franks, 2017; Roland

et al., 2017; Sachse and Galizia, 2003; Stopfer et al., 2003; Wang

et al., 2004). However, ORN activity patterns always reflect both

odor identity and intensity in a seemingly intertwined manner.

Increasing the concentration of any odor typically recruits more

ORNs, altering the combinatorial activity pattern in a complex

manner. Two previously described properties of ORN responses

may help disentangle odor identity and intensity. First, the rela-

tive activity of different ORNs largely persists across concentra-

tions of an odor (Cleland et al., 2007; Wachowiak et al., 2002).

Second, normalized ORN responses exhibit a stereotyped

distribution across odors. The mean population activity, used

to normalize ORN responses, scales on average with odor

concentration (Stevens, 2016). However, these studies lack the

full dynamic range of individual ORN responses, leaving it

unclear what and how properties of individual ORNs give rise

to the emergent properties characteristic of the population.

To assess the underlying mechanisms and further develop

a statistical description of population responses requires a

comprehensive analysis of ORN population activity, with sin-

gle-cell resolution, over a broad stimulus space that spans

many odorants across varying intensities.

Here, we asked whether a complete ORN population has

cellular- and systems-level properties that structure the re-

sponses to help disentangle odorant type and concentration

dependent variations. We hypothesized that such properties
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might be reflected in functional relationships between individual

and population ORN responses to a broad set of odorant con-

centrations and types. We leveraged the experimental accessi-

bility of the olfactory system of the Drosophila larva to search

for quantitative structure in the responses of a complete primary

olfactory population as well as in the sensitivity and dynamics of

individual ORNs. The numerical simplicity ofDrosophila olfactory

neurons facilitates such a systems-level dissection of a full set of

ORNs. Furthermore, the larval ORNs form the first layer of an ol-

factory circuit that also shares glomerular organization with adult

insects and vertebrates (Ramaekers et al., 2005; Su et al., 2009;

Vosshall and Stocker, 2007).

To perform our study, we developed an in vivo imaging setup

with microfluidics to simultaneously deliver highly controlled

stimuli from a panel of 34 odorants while monitoring the re-

sponses of all ORNs with cellular resolution. Our odorant panel

elicits activity in all 21 ORNs, allowing us to characterize the

functional structure of the entire population. We find that all

ORN-odorant pairs share the same activation or dose-response

function: ORN activity increases with odorant concentration

along the same Hill curve for any odorant, but with different sen-

sitivities. Thus, the principal free variable that characterizes the

interaction between any odorant molecule and any receptor is

the sensitivity. We find that the statistical distribution of these

sensitivities follows a power law. The consequence of this power

law is that the relative change of overall ORN activity becomes

proportional to the relative change of odorant concentration,

potentially simplifying the problem of how downstream neurons

process information about odor intensity. In addition, the primary

principal component of ORN sensitivities is correlated with amo-

lecular property that describes the geometric and electrotopo-

logical states of odorants (Haddad et al., 2008). Finally, ORNs

share a stereotyped temporal filter shape such that the observed

similarities in odorant response patternsmay also extend to fluc-

tuating environments, underscoring the computational signifi-

cance of these shared features. These structured ORN response

patterns may constitute a simple strategy to represent odors.

RESULTS

A Microfluidic Setup for In Vivo Calcium Imaging of
Larval ORNs
To record from a population of olfactory neurons with single-cell

resolution, we developed a microfluidics setup for delivering

a large range of odorant inputs while simultaneously imaging

neural activity. Small size and optical transparency make the lar-

va’s olfactory system—like that ofC. elegans—suitable for in vivo

multineuronal calcium imaging with microfluidic control of olfac-

tory inputs (Chronis et al., 2007). Furthermore, fluid delivery of

odorants allows for precise control of odorant concentration,

stimulus waveform, and timing between stimulus delivery

compared to gaseous odorant delivery (Andersson et al.,

2012). Our microfluidic device allows for recording from an

intact, immobilized, and un-anesthetized larva with as many as

24 fluid delivery channels (Figures 1A–1D and S1A–S1D). Cal-

cium imaging and genetic labeling allow us to record the activity

of any individual ORN alone or the activity of all ORNs simulta-

neously, by expressing the calcium indicator GCaMP6m (Chen

et al., 2013) under the control of either a specific ORNGal4 driver

or the Orco-Gal4 driver, respectively (Vosshall et al., 1999). We

use this microfluidic setup to perform single-cell and popula-

tion-level recordings of olfactory processing in single animals

exposed to inputs spanning a broad range of odorant types

and concentrations.

Single ORN Identification from Population Recordings
We sought to efficiently record ORN population responses to

many odorant stimuli in the same animal with single-cell identifi-

cation. To do this, we developed a method to unambiguously

identify all 21 ORNs during population recordings. First, we as-

sessed the stereotypy of larval ORN anatomical organization.

We found that the layout of ORN dendrites aids in segmenting

and identifying cells during calcium imaging. The larva has

21 ORNs located in each bilaterally symmetric dorsal organ gan-

glion (DOG). The 21ORN dendrites are organized into seven par-

allel bundles, each containing three dendrites, that project from

an ORN cell body to a perforated dome structure on the animal’s

head called the dorsal organ (Singh and Singh, 1984). When a

larva is immobilized in the microfluidic device, four ventral and

three dorsal dendritic bundles are easily distinguished (Fig-

ure 1E).Wemapped individual ORNs to each bundle by express-

ing RFP in all ORNs and GFP in a selected ORN using a cell-spe-

cific Gal4 driver (Fishilevich et al., 2005; Kreher et al., 2005)

(Figure S2). We found that the three ORN dendrites located in

each bundle were stereotyped (confirmed in n R 5 animals for

each ORN). Thus, by following the activation of any cell body in

the DOG to its corresponding dendritic bundle, we narrowed

its possible identity to one of three ORNs.

To complete the identification of individual ORNs, we used a

set of odorants that activate single ORNs of known identity at

low concentrations (Mathew et al., 2013) (see STAR Methods).

We delivered these odorants to larvae expressing GCaMP6m

in all ORNs and found that 15 of these odorants are sufficient

to identify each ORN when examined in conjunction with

dendritic bundle location (Figure 1F). Together, the anatomical

map and functional responses to this subset of odorants pro-

vides a comprehensive means of identifying and segmenting

theORNs responsive to any olfactory input duringmulti-neuronal

calcium imaging.

Orthogonality of Odorant Identity and Intensity in ORN
Population Activity
We next searched for general patterns in population-level olfac-

tory responses that might emerge from a sufficiently broad anal-

ysis of odorant types and intensities. We assembled a panel of

34 odorants that broadly samples the full olfactory sensitivity

of larval ORNs (see STAR Methods and Figure S3A). This panel

primarily contains odorants that are components of fruits or plant

leaves, which make up the larva’s natural environment (Dweck

et al., 2018) and have been shown to elicit innate attractive or

aversive behavior in the larva (Table S1). Furthermore, these

odorants have molecular structures that span a variety of func-

tional groups, such as esters, alcohols, aromatics, aldehydes,

ketones, pyrazines, thiazoles, and phenyl groups. To charac-

terize the ORN representation of these stimuli, we simulta-

neously recorded from all ORNs while exposing larvae to all
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Figure 1. Anatomical and Functional Identification of Individual ORNs within the Complete Population

(A) Schematic of the microfluidic setup for odorant delivery and larval olfactory receptor neuron (ORN) calcium imaging.

(B) 16-channel microfluidic chip. The arrowhead marks the inlet channel for loading a larva, the arrow marks the outlet channel for fluid waste, and the asterisk

marks the odorant stimuli delivery channels.

(C and D) Magnified views (103 in C and 403 in D) of an immobilized larva in the inlet channel. Red indicates RFP labeling of all ORN dendrites and cell bodies.

(E) Organization of the seven ORN dendritic bundles (numbered) in the larva.Or35a > GFP; Orco > RFP used to label all ORNs in red and the Or35a-ORN in green.

Dashed line in lateral view marks separation between ventral and dorsal bundles.

(F) Functional mapping between each of 15 odorants that primarily activate a single ORN within each dendritic bundle, at low concentrations. Size of shaded

circles indicates normalized neural activity level (DF/F) of the specified ORN to an odorant. The asterisk indicates inferred location of the Or33a-ORN based on

dendritic bundle 2 vacancy (Figure S2).

(G) DOG cell body locations and GCaMP6m responses of four ORNs responsive to 1-pentanol (left). Fluorescence intensity changes for each of the four ORN cell

bodies during pulsed presentations of increasing 1-pentanol concentrations (right). The arrow indicates time point at which left panel in (G) was captured.

See also Figures S1 and S2 and Video S1.
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34 odorants across the concentration range of olfactory sensi-

tivity. Using our anatomical and functional ORN identity mapping

method in addition to intensity-based registration and segmen-

tation methods (Pnevmatikakis et al., 2016; Thévenaz et al.,

1998), we quantified each ORN’s peak response (Figures S3B).

The peak response was defined as the highest ORN activity dur-

ing odorant delivery. We found that all 21 ORNs in each DOG

were responsive to at least one odorant in the panel.

We measured the response amplitude of every ORN to

odorant stimuli across five orders of magnitude in concentration,

from 10�8 dilution (where all odorants were at or below the

threshold of ORN detection) to 10�4 dilution (where many

ORNs reached saturation). We used 5 s step pulses interleaved

with 20–60 s of water, a protocol that allowed for us to measure

peak responses and for full recovery of neural activity (Figures

S1E and S1F). We measured ORN activity using the calcium in-

dicator GCaMP6m, a sensitive reporter of neural excitation. Pre-

vious studies have reported that some odor molecules can

inhibit some ORNs in Drosophila and other insects (Cao et al.,

2017; Hallem and Carlson, 2006; Tichy et al., 2005). We did not

observe odorant-induced inhibition across ORNs, although the

low background intensity of GCaMP6m makes it much more

sensitive to excitatory than inhibitory responses. We note that

calcium imaging also limits our temporal resolution to that of

the GCaMP6m indicator (Chen et al., 2013).

We found that ORNs that are sensitive to a particular odorant

are also sensitive to molecules with similar chemical structure.

For example, the long-chain alcohol 1-pentanol slightly evoked

activity specifically in the Or35a-ORN at a 10�7 dilution. Higher

concentrations of 1-pentanol gradually saturated the Or35a-

ORN, while also activating four other ORNs expressing either

Or67b, Or85c, O13a, or Or1a (Figure 1G; Video S1). The addi-

tional ORNs recruited by 1-pentanol were also activated at low

concentrations by other long-chain alcohol odorants (Mathew

et al., 2013). We next examined the population-wide dose-

response curves for these additional alcohol odorants. Low con-

centrations of each alcohol specifically activated a distinct ORN.

Higher concentrations reliably activated the Or35a, Or13a,

Or67b, and Or85c ORNs to varying degrees (Figure S3C). We

then collected dose-dependent responses across the entire

ORN population for all 34 odorants, with at least five animals

per odorant (Figure 2A). Specific activation of single ORNs at

low concentrations (10�7 and 10�6 dilutions) is in agreement

with previous reports (Mathew et al., 2013). We found a similar

pattern of overlapping activation for ORNs that were selectively

responsive to odorants with similar molecular structures at low

concentrations.

As in other animals, the combinatorial olfactory activity pattern

changes with increasing odorant intensity (Malnic et al., 1999),

and with a pattern of ORN recruitment that is correlated with mo-

lecular selectivity. To discern this pattern, we performed prin-

cipal-component analysis (PCA) on the ORN population activity

responses to all 34 odorants across all five concentrations (i.e.,

PCA across 170 odorant-concentration pairs). We projected

ORN activity responses in the space of the first three principal

components, which accounts for 60% of the variance in the

data (Figure 2B). At the lowest concentrations, olfactory repre-

sentations at or below response thresholds were tightly clus-

tered at a central point in the PCA space. At higher concentra-

tions, olfactory representations diverged, increasing distance

monotonically from the central point. Interestingly, the trajectory

of each odorant tended to follow its own direction in PCA space.

This pattern is particularly clear for aliphatic and aromatic odor-

ants. Aliphatic odorants with long carbon chains form trajec-

tories projecting in a similar direction of PCA space, since higher

concentrations of these odorants tend to selectively recruit

ORNs that are also sensitive to aliphatic odorants. The same

was true for aromatic odorants and their corresponding group

of sensitive ORNs. Clustering of ORNs as primarily responsive

to aliphatic or aromatic odorant types agrees with previous

DrosophilaORNelectrophysiology recordings using large panels

of odorant and natural odor stimuli (Dweck et al., 2018; Kreher

et al., 2008). The trajectories corresponding to structurally similar

molecules are separated by small angles (Figure 2B). Visualiza-

tion of ORN responses in PCA space reveals structure in the

population representation of odorant identity over a large range

of intensities. The population wide responsemaintains a fixed di-

rection in the representation of each odorant with rising concen-

tration. This property also holds true for temporal responses of

the ORN population over the course of stimulus delivery (see

STAR Methods and Figure S3D).

AHill Functionwith Variable Sensitivity Describes Dose-
Response Relationships
We uncovered shared structure in each ORN’s activation func-

tion when we compared all odorant-ORN pairs that reached

saturation (n = 36 pairs). We found that the dose-response

curves were well described by a Hill function:

y =Amax

cn

cn +EC n
50

;

where Amax is the maximum response amplitude measured by

the calcium indicator, c is the odorant concentration, n is the

Hill coefficient or steepness of the linear portion of the curve,

and EC50 is the half-maximal effective concentration. The Hill

function canonically describes binding affinities in ligand-recep-

tor interactions such as that between odorants and Ors. We per-

formed a population fit on the 36 saturated dose-response

curves to the Hill function and find that all curves were well fit

Figure 2. Orthogonality of Odorant Identity and Intensity in ORN Population Activity

(A) Averaged peak responses of all 21 ORNs to a panel of 34 odorants, each delivered at five concentrations (n R 5 for each odorant type and concentration;

odorant pulse duration = 5 s).

(B) Principal-component analysis (PCA) of ORN population responses. Colored dots represent the projection of ORN population activity onto the first three

principal components. Size and color of dots correspond to odorant concentration and type, respectively. Dots from the same odorant are linked, and the

molecular structure of the odorant is shown adjacent to each trajectory. Aromatic versus aliphatic odorants cluster in separate regions of PCA space.

See also Figure S3, Table S1, and Data S1.
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by a shared Hill coefficient with R2 = 0:99 (see STAR Methods;

Figure S4A). Each recorded neuron reaches a similar saturated

response amplitude ðAmaxÞ across different molecules within

each experiment (Figures S4B and S4C). The amplitude normal-

ized dose-response curves, aligned by the EC50, collapse onto a

single Hill function with n= 1:42 (Figure 3A).

We further sought to determine the EC50 values for unsatu-

rated odorant-ORN pairs. To this end, we used a maximum-like-

lihood-based method (see STARMethods) to estimate the mean

EC50 value for each odorant-ORN pair. Our only constraint on the

estimation was that the amplitude and Hill coefficients had

shared mean values across all measurements, an assumption

supported by the 36 activity curves that reached saturation.

Using this method, we were able to extract EC50 values for the

majority of odorant-ORN pairs. EC50 values spanned several

orders of magnitude. We assembled a matrix of odorant-ORN

sensitivity (the inverse of EC50), which is most easily visualized

on a logarithmic scale (Figure 3B). This sensitivity matrix,

combined with the activation functions with shared Hill coeffi-

cients, was able to account for 99% of the variance in the entire

dataset of odorant-ORN interactions across all concentrations

(Figure S4D).

We conclude that a common Hill function, with the sensitivity

as the principal-free parameter, describes the dose-response

relationship for any odorant-ORN interaction. For each odorant,

the vector of sensitivity (a row in thematrix in Figure 3B) specifies

the identity and threshold of each activated ORN with increasing

odorant concentration. A corollary of having a unique sensitivity

vector for each odorant is having a unique direction for the trajec-

tory of population responses in principal component space

across concentrations (Figure 2B).

ORN Population Sensitivities Follow a Power-Law
Distribution
Next, we examined the probability distribution of ORN sensitiv-

ities. For each odorant, responsive ORNs were distributed along

a sensitivity axis, with most ORNs in the low sensitivity region

(Figure 3C). The density of ORNs diminishes with increasing sen-

sitivities, generating a heavy-tailed probability distribution. To

quantify this distribution, we constructed a cumulative density

function of ORN sensitivities, which is well fit by a line in a log-

log plot, indicative of a power law (Figure 3D). The probability

density function is described by PðxÞfx�l�1, l= 0:42 for

x > 4:23104 (methods from Clauset et al., 2009). We compared

the fitting of the power law with other heavy-tailed distributions

and concluded that the power law is the simplest form with a

good fit to the probability density of odorant-ORN sensitivities

(see STAR Methods and Table S2).

A power-law distribution of ORN sensitivities means that a

relative change of concentration of any odorant will trigger, on

average, the same relative change in the number of activated

ORNs. The power-law distribution of ORN sensitivities, together

with a common Hill function, should give rise to population-wide

activity that follows a power-law relationship with respect to con-

centration, with exponent l (See STAR Methods). We confirmed

this prediction in our experimental data (Figure 3E). The mean

activity of the ORN population grows with odorant concentration

following a power law with an exponent of 0.32 ± 0.06, which is

close to the exponent found from fitting the sensitivity distribu-

tion (Figure 3D). The power function in a log scale is a linear

relationship, such that logðAÞflogðcÞ, where A is ORN

population activity and c is odorant concentration. Thus, on

average, the relative change of the ORN population activity is

proportional to the relative change of odorant concentration,

dðlogðAÞÞfdðlogðcÞÞ=dA=Afdc=c (as shown in Figure 3E).

Correlations in ORN Sensitivities Correspond to
Molecular Structure
We used PCA to study the structure of the sensitivity matrix (see

STAR Methods). We found that the first principal component of

the logarithmically scaled matrix explains a significant portion

of the variance compared to shuffled data (Figure 4A). The eigen-

vector of the 1st principal component indicates the relative

weights of different ORNs along its axis. As shown in Figure 4B,

neurons that prefer long-chain alcohols (e.g., Or35a, Or13a, and

Or85c) and neurons that prefer aromatic odorants (e.g., Or45b,

Or59a, and Or24a) are at opposite extremes. Arranging all 34

odorants by their projection on the 1st principal component, a

clear trend based on molecular structure emerges, progressing

from long carbon chains on one end to aromatic molecules on

the other (Figure 4C).

To further examine the correlation withmolecular structure, we

considered an extensive list of molecular descriptors that were

found to be relevant to odor discrimination across animal spe-

cies (Haddad et al., 2008). We found that one of these molecular

descriptors, P1s, has the highest correlation to the first principal

component (Figure 4D, correlation coefficient(r) =�0.8). P1s is a

geometric descriptor of molecular structure weighted by atomic

electrotopological state. 1D long-chain molecules have large

P1s values, and 2D ring-like molecules have small values (see

examples in Figure 4D) (Todeschini and Lasagni, 1994). The

dominance of the P1s molecular descriptor is in agreement

with the trajectories of aromatic and aliphatic odorant represen-

tations pointing in opposite directions in Figure 2B.

ORN-Odorant Responses Share Similar Temporal
Characteristics
An additional challenge to olfactory coding of a wide variety of

odorant types across concentrations arises from complex tem-

poral dynamics due to physical fluctuations, such as turbulence

or convection, in the stimulus itself. To examine how fluctuations

affect ORN responses, we compared the conversion of temporal

patterns of olfactory input for different odorant-ORNpairs across

odorant intensities (Figure 5). To do this, we used reverse-corre-

lation analysis, subjecting larvae to ‘‘white noise’’ olfactory input

by stochastically switching between odorant and water delivery

and seeking the temporal filter that best maps olfactory inputs

into calcium dynamics (Figure 5A) (Geffen et al., 2009; Kato

et al., 2014). We found that random olfactory input could evoke

fluctuating calcium activity in an ORN, and repeated presenta-

tion of the same input pattern would evoke consistent normal-

ized responses from animal to animal (Figure S5A). The system-

atic conversion of the stimulus to response waveform is well

characterized by a linear-nonlinear (LN) model. A linear transfer

function estimates the relative weight of each time point in stim-

ulus history to determine the time-varying response amplitude
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Figure 3. Individual ORNs Share a Common Activation Function and Population Sensitivities Follow a Power-Law Distribution

(A) Normalized ORN responses across relative odorant concentration (actual concentration divided by EC50), for odorant-ORN pairs reaching saturation.

Individual curves for plotted odorant-ORN pairs collapse onto a single curve described by a Hill equation with a shared Hill coefficient of 1.42. Black line indicates

the Hill equation fit. Each distinct colored and shaped point represents data from an unique odorant-ORN pair.

(B) Heatmap of the logarithm of sensitivity values, log10ð1=EC50Þ, from each odorant-ORN pair. Asterisk for black elements indicates odorant-ORN pairs that had

no response within the tested concentration range.

(C) Raster plot of ORN sensitivities (1=EC50) for each odorant. Each tick mark represents an ORN.

(D) Log-log plot of the cumulative distribution function of ORN sensitivities across all odorants. Dashed line is a linear fit to the data with slope = � 0:42.

(E) Log-log plot of average neuron activity ðDF=FÞ across all odorant-ORN pairs for each concentration. Error bars = SEM. Slope of least-squares fit line =

0.32 ± 0.06 ðR2 = 0:99Þ.
See also Figure S4 and Table S2.
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(Figure 5B). The convolution of the linear transfer function with

stimulus history is then passed through a static nonlinearity to

correct for saturation (Figure S5B). We verified the LN model

by predicting the response to a novel random input using a filter

calculated from different random inputs (Figure S5C). To make

comparisons across odorants, concentrations, and ORNs, we

used normalized response amplitudes that preserve temporal

characteristics encoded in the filter shape.

Wemeasured the linear transfer function for 3-octanol as it has

a relatively broad recruitment of ORNs across the concentration

range studied. At the lowest concentrations of 3-octanol, a filter

describing ORN activity only emerges for the Or85c-ORN (Fig-

ure 5C). At higher concentrations, filters begin to emerge for

additional ORNs. These filters for each ORN, when normalized

for response amplitude, were virtually identical in their temporal

response profiles as single lobed functions with similar peak and

decay times (Figures 5D–5E and S5D). The shapes of the filters

for different odorants activating the same ORN are also virtually
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lar Structure

(A) Percentage of variance explained by each

principal component of the ORN sensitivity matrix

in Figure 3B. Data compared with the results from

1,000 randomly shuffled matrices. Error bars, 95%

confidence interval.

(B) Weights indicating each ORN’s contribution to

the 1st principal component.

(C) Each odorant’s (indicated by molecular struc-

ture) projection onto the 1st principal component.

(D) Correlation between each odorant’s projection

on the 1st principal component and the most

correlated molecular descriptor, P1s.

indistinguishable, on the order of

�100 ms (Figures 5F and 5G). Thus, the

rank order of the ORN responses could

be preserved in an environment with

fluctuating odor intensities.

DISCUSSION

ORNs have diverse tuning properties to

odorant molecules. This diversity forms

a combinatorial receptor code that repre-

sents a broad range of odorant molecules

across concentrations. Changes in con-

centration lead to changes in the combi-

natorial pattern of activated ORNs,

potentially complicating the ability to

separate differences in odor identity and

odor intensity. Here, we asked whether

ORNs, at the individual and population

levels, display structured response pat-

terns that might facilitate in separating

such differences. Previous efforts at

characterizing Drosophila ORNs neces-

sarily focused analysis on particular

ORN types, odorants, or odorant concentrations (Asahina

et al., 2009; Hallem and Carlson, 2006; Martelli et al., 2013;

Mathew et al., 2013; Nagel and Wilson, 2011). Electrophysiolog-

ical studies of larval Ors, expressed in ‘‘empty olfactory neurons’’

of the adult fly, revealed the tuning of individual receptors to large

numbers of odorant molecules (Kreher et al., 2008; Mathew

et al., 2013). Calcium imaging of larval ORNs directly revealed

how subsets of larval ORNs are activated by selected odorants

and concentrations (Asahina et al., 2009). This study bridges

these pioneering efforts with an analysis of population-wide

olfactory responses with single-cell resolution across a broad

olfactory space. The small size of theDrosophila larva, combined

with multi-neuronal imaging and new microfluidic tools, has

allowed us to characterize the responses of a complete ORN

population to a panel of odorant types and concentrations that

fully spans the sensitivity of larval ORNs.

Our broad characterization has uncovered features in the

response patterns of individual ORNs and of the ORN population
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Figure 5. Common Temporal Signal Processing across ORNs

(A) Or42a-ORN response to a white noise stimulus of 3-pentanol at 10�7 dilution. Red indicates on-off stimulus sequence over time, and the black curve indicates

ORN response.

(B) Linear filter calculated via reverse-correlation analysis from the data shown in (A).

(legend continued on next page)
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that are shared across different ORNs and across odorants. At

the level of individual neurons, each ORN response to odorants

exhibits the same activation function shape with varying sensi-

tivity levels. At the level of the population, the relative change

of ORN activity across all tested odorants is proportional to the

relative change of odorant concentration, a consequence of a

power law that describes the sensitivity distribution of ORNs.

Furthermore, a common temporal filter shape converts different

stimulus waveforms into ORN calcium activity patterns. Here, we

discuss the functional implications of such shared structure in

ORN responses, and we connect our findings to computations

thought to occur in the early olfactory system.

Common Activation Function across ORN-Odorant Pairs
We confirmed that a shared activation function across ORNs and

odorants is consistent with available electrophysiological re-

cordings of Drosophila ORNs, which also reveal activation func-

tions across concentrations that can be fit to Hill curves with

shared coefficients (see STAR Methods and Figures S4H and

S4I) (Kreher et al., 2008). The exact value of the Hill coefficient

for activation functions corresponding to spike rates (�0.7) and

calcium dynamics (�1.4) are different, likely reflecting the

nonlinear transformation between electrical activity and calcium

activity across ORNs. Common activation functions have also

been observed for subsets of ORNs responding to molecularly

similar odorants in the cockroach antenna and the rat olfactory

bulb (Meister and Bonhoeffer, 2001; Sass, 1976).

The underlying molecular basis for shared activation functions

across receptor types may be similar stoichiometries in odorant-

receptor binding across Ors and/or similar internal signaling

pathways for spike generation across ORNs. Nagel and Wilson

(2011) found that dynamics of spike generation were highly ste-

reotyped fromORN to ORN. Common signaling pathways would

be consistent with the observation that expressing an Or in

different ORNs or the endogenous ORN lead to similar tuning

properties and background firing rates (Hallem et al., 2004).

Such a property could be analogous to that of photoreceptors

in the visual system. Red and green cones share a similar shape

in their response profiles across wavelengths. The only differ-

ence in their stimulus-evoked activity patterns is their spectral

sensitivity (Naka and Rushton, 1966).

A common activation function across odorant and receptor

types is one component of correlations in ORN response pat-

terns across olfactory space. Shared activation functions and

the sensitivity distribution across ORNs likely allow the vector

representation of any odorant to maintain a similar direction

across concentrations. An uniform intraglomerular transfer func-

tion from ORNs to second-order projection neurons (PNs) has

been described in the adult Drosophila antennal lobe (Olsen

et al., 2010). Together, these common functions allow the olfac-

tory system to maintain distinct representations of different

odorants that are stable across concentrations as has been

demonstrated by Sachse and Galizia (2003) and Stopfer et al.

(2003). Our work suggests that an intensity invariant aspect of

odor representation—the direction of the activity vector in prin-

cipal component space—already emerges at the ORN layer,

and this property may be carried forward to the PN layer.

Power-Law Distribution in Olfactory Sensitivities
across ORNs
Different neurons are required to sense odorants in different re-

gimes of odorant concentration needed for long-range chemo-

taxis, in the Drosophila larva (Asahina et al., 2009). Encoding a

broad concentration range requires a distribution of ORNs with

varying sensitivities. We find that these olfactory sensitivities

are drawn from a power-law distribution.

To our knowledge, a power-law distribution of olfactory sensi-

tivities has not yet been described in any animal. One possibility

for the power law in olfactory sensitivity is to match the distribu-

tions of odorant concentrations found in natural olfactory envi-

ronments. Natural odors are mixed by convection and turbu-

lence, physical processes that are rich in power-law dynamics

(Celani et al., 2014; Murlis, 1992; Riffell et al., 2008). Power

laws appear in the statistics of other natural stimuli as well. Nat-

ural visual scenes exhibit a power-law relationship between

spectral power and spatial frequency (Field, 1987; Simoncelli

and Olshausen, 2001). The loudness of natural sounds across

frequencies are distributed by power laws (Theunissen and

Elie, 2014). Sensory systems, in general, may adapt the statisti-

cal distribution of their sensitivities to their natural environments.

The natural environment may drive the selection of amolecular

recognitionmechanism for Ors that gives rise to a power-law dis-

tribution in ORN sensitivities. Lancet et al. (1993) proposed a

molecular recognition system in which a receptor has multiple

selective binding subsites. Each binding subsite contributes in

a combinatorial manner to the binding strength between a recep-

tor and molecule. This simple probabilistic model generates a

power-law sensitivity distribution for receptors with random

sets of binding subsites. The statistics of an olfactory code using

such a molecular recognition system would be preserved with

expansion of the ORN periphery, as occurs with Drosophila in

which the adult has nearly triple the number of receptor types

as that found in the larva.

A power-law distribution implies a fixed ratio between the rela-

tive change in ORN population activity for a relative change in

odorant concentration. Detection of relative change in stimulus

intensities has been observed in psychophysical studies of

diverse sensory modalities. A notable example is Stevens’s law

in human psychophysics, where perceived response magni-

tudes have been shown as a power function of actual stimulus

(C) Linear filters of seven ORNs responding to 3-octanol across five concentrations. Black curve indicates the averaged filter from data across multiple animals

(individual filters shown in gray).

(D and E) Comparison of filter waveforms for the same ORN (Or85c) responding to different odorants and concentrations (D) and the same odorant (10�4 dilution

of 3-octanol) activating different ORNs (E). All filters were normalized by their peak amplitude.

(F and G) Distribution of peak time (F) and decay time (G) of 31 averaged filters measured from various ORN and odorant stimuli. Error bars, SEM. Distributions of

peak and decay times were fit to Gaussian distributions with mean and variance indicated below each histogram.

See also Figure S5 and Video S2.
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intensities ðFðIÞ � InÞ, across many sensory modalities including

olfaction (Stevens, 1957). Our results reveal that a phenomenon

analogous to Stevens’s law can be attributed to the olfactory

sensory periphery itself, a direct outcome of the statistical distri-

bution of response sensitivities across the ORN population. Cao

et al., (2016) and Gorur-Shandilya et al., (2017) find that, at the

individual ORN level, adaptation scales ORN gain with respect

to odorant concentration according to the Weber-Fechner law.

These findings are complementary to our study, which expands

the scaling observation to the entire ORN population and across

several orders of magnitude in concentration. Together these re-

sults suggest that multiple complementary mechanisms underlie

the Weber-Fechner and Steven’s law.

Common Temporal Signal Processing across ORNs
Weobserved a common temporal filter shape across ORNs in an

environment with fluctuating odorant concentrations. Although

calcium imaging limited our ability to resolve possible temporal

differences in these filters faster than �100 ms, we note that

Martelli et al. (2013) also reported remarkable similarities in their

measurement of temporal filters for LN models that connect

odorant dynamics to electrical activity in adult Drosophila

ORNs. Common temporal filters are also consistent with the

observation of a fixed degree and kinetics of adaptation in

ORNs (Martelli et al., 2013).

A constant temporal filter in conjunction with a uniform ORN

activation function over concentrations could allow a population

of responsive neurons to maintain the same relative amplitudes

of activation in a static or fluctuating odorant environment.

Instantaneous olfactory representations would not change sim-

ply because each ORN has a different rate of activation or inac-

tivation in response to the same changes in odor concentration.

Constant temporal filters across ORNs may arise from stereo-

typed transduction dynamics among ORNs. Thus, a common

temporal filter shape across ORNs could preserve the olfactory

code in an environment with fluctuating odor concentrations.

Implications for Olfactory Processing
Shared patterns in single and population-level ORN responses

across olfactory space are in agreement with previously

described circuit mechanisms in the antennal lobe, the first ol-

factory processing center inDrosophila. Normalization is thought

to occur through a class of local interneurons that receive and

pool inputs from all ORNs, thereby normalizing the olfactory rep-

resentation across concentrations through inhibitory feedback

(Olsen and Wilson, 2008; Olsen et al., 2010). Anatomical studies

in the larva have revealed the class of local interneurons that

could carry out this normalization function (Berck et al., 2016).

The shared activation function across ORNs and across odor-

ants could benefit this circuit mechanism by preserving the

rank order of ORN activity before and after normalization, helping

maintain odorant identification and discrimination across varying

intensities. The power-law distribution of sensitivities means that

most ORNswill be weakly active for most odors at most concen-

trations. A nonlinear transformation from ORNs to PNs during

divisive normalization helps amplify the signal of weakly active

ORNs (Olsen et al., 2010), benefitting the population-level

representation.

For animals that sniff, the change in concentration through

inhalation generates a temporal sequence of ORN activity, re-

flecting the order of olfactory sensitivities for the inhaled odorant

molecules. In a primacy code for odorant identification, animals

use the first set of activated ORNs to recognize an odor (Wilson

et al., 2017). Such a code would benefit from shared activation

functions across ORNs by preserving the rank order of ORN acti-

vation as odorants are sniffed at different concentrations.

Furthermore, high-sensitivity ORNs are generally less densely

distributed along the sensitivity spectrum, in relation to other

ORNs. Thus, the sensitive ORNs would be the most informative

for odor identification by the primacy code since they are more

separated.

In conclusion, this study highlights properties of individual

ORNs (common activation functions with different sensitivities)

and of the ORN population (a power-law distribution of sensitiv-

ities) that may reflect simple strategies for representing odor

identity and intensity. In the future, it will be interesting to

examine how downstream olfactory neurons ultimately extract

and use the described structure in ORN responses.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

4,5-Dimethylthiazole Sigma-Aldrich CAS 3581-91-7

Geranyl acetate Sigma-Aldrich CAS 105-87-3

2,5-dimethylpyrazine Sigma-Aldrich CAS 123-32-0

2-acetylpyridine Sigma-Aldrich CAS 1122-62-9

3-octanol Sigma-Aldrich CAS 589-98-0

6-methyl-5-hepten-2-ol Sigma-Aldrich CAS 1569-60-4

1-pentanol Sigma-Aldrich CAS 71-41-0

Isoamyl acetate Sigma-Aldrich CAS 123-92-2

Butyl acetate Sigma-Aldrich CAS 123-86-4

Ethyl butyrate Sigma-Aldrich CAS 105-54-4

Benzaldehyde Sigma-Aldrich CAS 100-52-7

Methyl salicylate Sigma-Aldrich CAS 119-36-8

2-heptanone Sigma-Aldrich CAS 110-43-0

4-methylcyclohexanol Sigma-Aldrich CAS 5899-91-3

Ethyl acetate Sigma-Aldrich CAS 141-78-6

2-phenylethanol Sigma-Aldrich CAS 60-12-8

Pentyl acetate Sigma-Aldrich CAS 628-63-7

3-Pentanol Sigma-Aldrich CAS 584-02-1

Anisole Sigma-Aldrich CAS 100-66-3

Methyl phenyl sulfide (Thioanisole) Sigma-Aldrich CAS 100-68-5

Trans-3-Hexen-1-ol Sigma-Aldrich CAS 928-97-2

Acetal Sigma-Aldrich CAS 105-57-7

2-Nonanone Sigma-Aldrich CAS 821-55-6

4-Hexen-3-one Sigma-Aldrich CAS 2497-21-4

4-Methyl-5-vinylthiazole Sigma-Aldrich CAS1759-28-0

Trans, trans-2,4-Nonadienal Sigma-Aldrich CAS 5910-87-2

2-Methoxyphenyl acetate Sigma-Aldrich CAS 613-70-7

Hexyl acetate Sigma-Aldrich CAS 142-92-7

Benzyl acetate Sigma-Aldrich CAS 140-11-4

Linalool Sigma-Aldrich CAS 78-70-6

(1R)-(-)-myrtenal Sigma-Aldrich CAS 18484-69-6

4-phenyl-2-butanol Sigma-Aldrich CAS 2344-70-9

Pentanoic acid (valeric acid) Sigma-Aldrich CAS 109-52-4

Nonane Sigma-Aldrich CAS 111-84-2

Menthol Sigma-Aldrich CAS 89-78-1

Experimental Models: Organisms/Strains

UAS-mCherry.NLS; UAS-GCaMP6m This study

UAS-mCD8::GFP; Orco::RFP Bloomington Drosophila

Stock Center (BDSC)

RRID:BDSC_63045

Orco-Gal4 BDSC RRID:BDSC_23292

Or1a-Gal4 BDSC RRID:BDSC_9949

Or7a-Gal4 BDSC RRID:BDSC_23907

RRID:BDSC_23908
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact,

Dr. Aravinthan Samuel (samuel@physics.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster flies were reared at 22�C under a 12:12 hour light/dark cycle in vials containing conventional cornmeal-agar

based medium. Adult flies were transferred to a larvae collection cage (Genesee Scientific) containing a grape juice agar plate and a

dime-sized amount of fresh yeast paste. Flies could lay eggs on the grape juice agar plate for two days and then the plate was

removed for collection of first instar larvae. Both female and male larvae were used in all experiments. Transgenic stocks were ob-

tained from the Bloomington Drosophila Stock Center (BDSC). The following fly strains were used in this study: UAS-mCherry.NLS;

UAS-GCaMP6m (a combination of UAS-mCherry.NLS:BL38425, and UAS-GCaMP6m:BL42750), UAS-mCD8::GFP; Orco::RFP

(BL63045), Orco-Gal4 (BL23292), Or1a-Gal4 (BL9949), Or7a-Gal4 (BL23908 and BL23907), Or13a-Gal4 (BL9945), Or22c-Gal4

(BL9953), Or24a-Gal4 (BL9958), Or30a-Gal4 (BL9960), Or33b-Gal4 (BL9963), Or35a-Gal4 (BL9968), Or42a-Gal4 (BL9970), Or42b-

Gal4 (BL9971), Or45a-Gal4 (BL9976), Or45b-Gal4 (BL9977), Or47a-Gal4 (BL9982), Or49a-Gal4/Cyo; Dr/TM3 (gift from John Carlson

lab), Or59a-Gal4 (BL9990), Or63a-Gal4 (BL9992), Or67b-Gal4 (BL9995), Or74a-Gal4 (BL23123), Or82a-Gal4 (BL23125), Or83a-Gal4

(BL23128), Or85c-Gal4 (BL23913), and Or94b-Gal4 (BL23916).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Or13a-Gal4 BDSC RRID:BDSC_9945

Or22c-Gal4 BDSC RRID:BDSC_9953

Or24a-Gal4 BDSC RRID:BDSC_9958

Or30a-Gal4 BDSC RRID:BDSC_9960

Or33b-Gal4 BDSC RRID:BDSC_9963

Or35a-Gal4 BDSC RRID:BDSC_9968

Or42a-Gal4 BDSC RRID:BDSC_9970

Or42b-Gal4 BDSC RRID:BDSC_9971

Or45a-Gal4 BDSC RRID:BDSC_9976

Or45b-Gal4 BDSC RRID:BDSC_9977

Or47a-Gal4 BDSC RRID:BDSC_9982

Or49a-Gal4/Cyo; Dr/TM3 Gift from John Carlson

Or59a-Gal4 BDSC RRID:BDSC_9990

Or63a-Gal4 BDSC RRID:BDSC_9992

Or67b-Gal4 BDSC RRID:BDSC_9995

Or74a-Gal4 BDSC RRID:BDSC_23123

Or82a-Gal4 BDSC RRID:BDSC_23125

Or83a-Gal4 BDSC RRID:BDSC_23128

Or85c-Gal4 BDSC RRID:BDSC_23913

Or94b-Gal4 BDSC RRID:BDSC_23916

Deposited Data

Raw and analyzed ORN dose-response data This paper https://github.com/samuellab/Larval-ORN

Raw activity data of 21 ORNs responding

to 34 odorants.

This paper https://data.mendeley.com/datasets/7kbsmx94zm/

draft?a=8ad617e6-e9db-4e4f-b1a2-776b00fb4c58

Software and Algorithms

TurboReg Thévenaz et al., 1998 http://bigwww.epfl.ch/thevenaz/turboreg/

CaImAn-MATLAB Pnevmatikakis et al., 2016 https://github.com/flatironinstitute/CaImAn-MATLAB

Power-law distribution in empirical data Clauset et al., 2009 http://tuvalu.santafe.edu/�aaronc/powerlaws/

Algorithms for analyzing ORN ensemble

dose-response data

This paper https://github.com/samuellab/Larval-ORN

Linear-Nonlinear model analysis of ORNs’

response to m-sequence stimuli

This paper https://github.com/samuellab/Larval-ORN
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METHOD DETAILS

Microfluidic device design, fabrication, and specifications
The microfluidic device pattern was designed using AutoCAD. Devices were designed to have either 8, 16, or 24 channels, but all

devices operate using a similar strategy (Figure S1A). For example, the 16-channel device includes two control channels to direct

odorant flow, 13 odorant channels, one water channel to remove odorant residue, a larva loading channel, and a waste channel.

The odorant, water, and control channels are of equal length to ensure equal resistance. The device was designed to function using

a directed flow strategy similar to that described in (Chronis et al., 2007). Briefly, the device always has three channels open: the

water, an odorant and a control channel (Figure S1C). Switching between the two control channels directs either water or an odorant

to flow past the larva, as demonstrated in Figure S1D. The loading channel is 70 mmhigh with a width starting at 300 mmand gradually

tapering to 60 mm in order to immobilize a first instar larva. The tapered end of the loading channel is positioned perpendicular to a

stimulus delivery channel to allow for odorant flow past larval ORNs (Figure 1D).

The design pattern was sent to a mask-making service (outputcity.com), which provided the photomask. The mask was then

transferred onto a silicon wafer using photolithography. The wafer was used to fabricate microfluidic devices using polydimethylsi-

loxane (PDMS) and the standard soft lithography approach. The resulting PDMS molds were cut and bonded to glass coverslips.

Each microfluidic device was used with only a single panel of odorants to prevent odorant contamination.

We used fluorescein dye to measure the switching time between water and odorants as well as to verify the spatial odorant profile

in the device during stimulus delivery. Our standard air pressure for stimulus delivery was 6 psi, which led to a flow rate of 0.5 mL/min

or 0.2 m/s in the microfluidic device. With these conditions, the switching time between water and odorant was�20ms (Figure S1B).

Odorant delivery
Odorants were obtained from Sigma-Aldrich, diluted in deionized (DI) water (Millipore) and stored for no more than one week. To

prevent contamination, each odorant concentration was stored in a separate glass bottle and delivered through its own syringe

and tubing set. Panels of odorants were delivered using a 16-channel pinch valve perfusion system (AutoMate Scientific, Inc.).

Each syringe and tubing set contained a 30 mL luer lock glass syringe (VWR) connected to Tygon FEP-lined tubing (Cole-Parmer),

which in turn was connected to silicone tubing (AutoMate Scientific. Inc.). The silicone tubing was placed through the pinch valve

region of the perfusion system since its flexibility could allow for the passage or blockage of fluid flow to the microfluidics device.

The silicone tubing was then connected to PTFE tubing (Cole-Parmer), which was then inserted into the microfluidic device.

A microcontroller and customwritten MATLAB code were used to control the on/off sequence of the valves and to synchronize valve

control with the onset of recording in the imaging software (NIS Elements).

The larva experienced continuous fluid flow at a rate of 0.5 mL/min for the entire duration of a recording. In dose-response

experiments, the stimulus sequence consisted of five second odorant pulses interleaved by a water washout period. The odorant

pulse duration timewas chosen such that ORN soma responses reachedmaximum amplitude (Figure S1E). Thewater washout dura-

tion was adjusted based on stimulus concentration to allow for ORN recovery back to baseline activity levels, and thus ensured that

measurements of ORN responses were independent of stimulus sequence (Figure S1F and Video S1). For white noise experiments, a

1024-step m-sequence of odorant and water was delivered with a time step of 0.2 s (Video S2).

Odor selection
We pooled all 690 odorants described on the Database of Odor Responses (DoOR), a repository of odor response measurements

from studies on the fruit fly Drosophila melanogaster and the honeybee Apis mellifera (M€unch and Galizia, 2016). For each of

the 690 odorants, we used the E-Dragon software (http://www.vcclab.org/lab/edragon/) to determine the values corresponding

to 32 molecular descriptors of the multidimensional odor metric described in (Haddad et al., 2008). We next performed PCA on all

odorants with their descriptors and visualized odorant distribution using the first three PCs.We first picked the 19 odorants described

in (Mathew et al., 2013) for our panel. To select the remaining odorants, we picked ones such that our odorant panel closely matched

the density profile and distribution of the 690 odorants represented along the first 3 PCs of the PCA space.We found that 35 odorants

were sufficient to meet our distribution matching requirements and for the panel to include stimuli that cover a broad range of

molecular functional groups, are relevant environmental odorants for the larva, have been previously shown to elicit behavioral

responses in the larva (see Figure S3A and Table S1). During our imaging experiments, we found that one odorant, pentanoic

acid, did not elicit any ORN responses and thus removed it from the panel.

Calcium imaging
First instar larvae were loaded into a microfluidic device using a 1 mL syringe filled with a 0.1% triton-water solution. Each larva was

gently pushed to the end of the loading channel where it was mechanically trapped. The larva was positioned such that its left and

right dorsal organs (nose) were exposed to the stimulus delivery channel and its dorsal side (location of ORN cell bodies) was closest

to the objective.

Larvaewere imaged using an invertedNikon Ti-e spinning disk confocalmicroscopewith a 60Xwater immersion objective (NA 1.2).

A charged-coupled device (CCD)microscope camera (Andor iXon EMCCD) captured images at 30 frames/sec. ORN cell bodies were
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recorded by scanning the entire volume (�20 slices with a step size of 1.5 mm) of the dorsal organ ganglion (Video S1), while ORN

axon terminals were recorded from a single slice of the antennal lobe (Video S2).

Initial experiments were performed to verify the identity of ORNs activated by each of the 19 odorants that were described in

(Mathew et al., 2013) and used in our panel for ORN identification (data not shown). We used single ORN Gal4 drivers expressing

GCaMP6m to confirm the ORN(s) responsive to each of the 19 odorants.

Dose-response experiments (data shown in Figures 1, 2, S3B, and S3C; Video S1) were performed using larvae of the Orco >

GCaMP6m, Orco > mCherry.NLS genotype and recording from ORN cell bodies. White noise experiments (data shown in Figures

5 and S5; Video S2) were performed using larvae expressing GCaMP6m in a single ORN (e.g., Or42a > GCaMP6m used in Figure S5)

and recording from ORN axon terminals. For all experiments, both the left and right sides of ORN soma or axon responses were re-

corded simultaneously and used for analysis. Recordings from at least five larvae were collected for each odorant. All samples were

used for analysis unless dendritic varicosities developed over the course of the recording, a sign of unhealthy neurons likely due to

mechanical stress.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed with custom scripts written in MATLAB, available at https://github.com/samuellab/Larval-ORN. The statistical

tests, representations of sample sizes (‘‘n’’), what each n value represents, and other related measures are shown in the legend of

each relevant figure. No statistical methods were used to determine sample sizes in advance, but sample sizes are similar to those

reported in other studies in the field.

Quantification of dose-response recordings
Custom code written in ImageJ and published MATLAB code were used to track and identify each ORN as well as its responses to

odorant stimuli. Slight movement artifacts were corrected by aligning frames using mCherry NLS labeling of ORN cell bodies and the

ImageJ TurboReg plugin (Thévenaz et al., 1998). ROI segmentation was performed using the method of constrained nonnegative

matrix factorization (CNMF) (Pnevmatikakis et al., 2016). Each ORN activated in response to an odorant stimulus was visually iden-

tified using both the anatomical location of its dendritic bundle and the functional map of cognate odorant to ORN activation (Figures

1E–1G and S2). ORN identification was performed independently by two experimenters to ensure accuracy. Changes in fluorescence

were then quantified as ðFpeak � F0Þ=F0, where F0 was the average ORN intensity sampled from the frames immediately preceding

odorant delivery and Fpeak was the highest intensity in ORN fluorescence during odorant delivery. Each odorant stimulus was

repeated across at least 5 animals. The raw response data is summarized in Data S1.

The heatmap in Figure 2A was generated by directly averaging the peak responses across animals (no normalization was per-

formed). Simulated annealing was used to optimize the order of ORNs and odorants presented in this heatmap, such that it minimized

a loss function in which cost increased linearly with the distance that activated odorant-ORN pairs were from the matrix diagonal.

Matrices of neural responses at each concentration were concatenated, such that columns corresponded to ORNs and rows cor-

responded to odorants, for all five concentrations. We then centered the data and performed PCA using the SVD method, along

the ORN axis (Figure 2B).

To visualize temporal dynamics of ORN responses over the duration of stimulus delivery, we performed PCA on ORN responses

over time to two odorants, benzaldehyde and ethyl butyrate, across five concentrations (Figure S3D). The time period starts from

odorant pulse delivery and continues up to 15 s after delivery offset. Similar methods and findings have been described in insect ol-

factory projection neurons (Mazor and Laurent, 2005; Stopfer et al., 2003).

Estimation of EC50 values
Dose-response data were modeled as following a Hill equation, the general form of which is as follows:

y =Amax

cn

cn +ECn
50

(1)

where Amax is the maximum ORN response level across concentrations, c is the odorant concentration, EC50 is the half-maximal

effective concentration, and n is the Hill coefficient.

There were a total of 259 odorant-ORN pairs in which some odorant response was observed. Saturation of the dose-response

curve was observed in 36 of these odorant-ORN pairs. We first performed a least-squares fit on each of the individual 36 curves

and found that the curves had similar Hill coefficients. However, with only five data points to describe each curve and three free pa-

rameters to fit the Hill function, there was large uncertainty in the fit estimates. We instead perform a population fit on all 36 saturated

curves to a Hill function with a common Hill coefficient, by optimizing the following equation:

min
Amax i ; EC50 i ;n

X36
i = 1

jY i � fðAmaxi;EC50i;n;cÞ j
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where i indicates each of the 36 saturated odorant-ORN pairs, Y i is the average ORN response for an odorant-ORN pair, f is the Hill

equation with parameters Amax i and EC50 i for each pair, n is the shared Hill coefficient, and c is the five concentration levels used in

this study. The optimization method uses the standard MATLAB fminsearch function. We find that this approach yields a R2 = 0.99,

which is comparable to the goodness of fit from 36 independent Hill coefficients (Figure S4A).

For the remaining 223 non-saturated pairs, there were not enough points on the dose-response curve to estimate parameters

of the Hill equation using the previous method. To make estimates of the Hill equation parameters for pairs in which saturation

was not observed, we modeled a single animal response using the Hill function. For a given odorant-ORN pair, for a single animal,

the ORN’s A;n, and k = log10ð1=EC50Þ parameters were each drawn from normal distributions. Additionally, we assumed that the dis-

tributions for A and n as well as the variance of the EC50 distributions were independent of odorant and ORN. Thus, the distributions

for A and n across all odorant-ORN pairs were the same, and the distributions of k across all odorant-ORN pairs differed only in their

mean value k.

The data were modeled in this way because the primary source of variance in the data was from animal-to-animal response vari-

ation. This variation was much larger than the trial-to-trial variation in a single animal. For a single odorant-ORN pair across different

animals, different values for A; n, and k may be resolved. Further, the mean and variance in A and n across animals for the same

odorant-ORN pair appeared comparable to the mean and variance in A and n for different odorant-ORN pairs. Similarly, the variance

in k across animals for the same odorant-ORN pair appeared comparable to the variance in k across animals for different odorant-

ORN pairs.

We perform maximum likelihood estimation on this model by writing down the probability that the data might be generated

by the model with particular values for the moments of the distributions of A; n, and k. For this model, we use the log scale

of concentration and EC50 : x = log10ðcÞ; k = log10ð1=EC50Þ; and the logistic function in place of the Hill equation:

y xð Þ=A=ð1+ exp �n x + kð Þð ÞÞ, with n = n ln 10. Deviations from the logistic function are modeled as Gaussian noise N ðyqiðxÞ;sNÞ,
where sN represents experiment noise. Specifically, for a single-animal i of one odorant-ORN pair (indexed by q), the probability

of generating responses Yi given normal distributions for A; n, and k is

P
�
Yqi

��A;sA; kq; sk ; n; sn; sN

�
=

ZZZ
PðYqi

��Aj; kj; nj;sNÞP
�
Aj

��A; sA

�
P
�
kj
�� kq;sk

�
Pðnj

�� n; snÞdAjdkjdnj: (2)

Here, the first term PðYqi

��Aj; kj; nj;sNÞ represents the probability of generating the data from a logistic function with parameters Aj;kj;

nj, given Gaussian noise with variance s2N. The other three terms on the right side are also Gaussians. Note that the only dependence

on the odorant-ORN pair q is in themean value kq. For one odorant-ORN pair, across all animals, the probability is then the product of

the individual animals

P
�
Yq

��A; sA; kq; sk ; n;sn; sN

�
=
YM
i

P
�
Yqi

��A;sA; kq;sk ; n;sn;sN

�

whereM is the number of animals for that odorant-ORN pair. The probability of generating all the data across odorant-ORN pairs from

this model is then

P
�
Y jA;sA; k; sk ; n;sn; sN

�
=
YQ
q

P
�
Yq

��A;sA; kq;sk ; n;sn;sN

�
;

where Q is the total number of odorant-ORN pairs and k = ðk1; k2;.kQÞ is the vector of log10ð1=EC50Þ values for all odorant-ORN

pairs. Maximum likelihood estimation amounts to maximization of this expression, or, typically, the logarithm of this expression

max
A;sA ;k;sk ;n;sn ;sN

ln
�
P
�
Y jA;sA; k; sk ; n;sn; sN

��
(3)

We characterize ðA;sA;sk ; n;sn; sNÞ as being global (applying to all odorant-ORN pairs) and k as being local (different for every

odorant-ORN pair). The moments of the distribution are optimized by alternatively optimizing for the global moments while fixing

the local moments and optimizing the local moments while fixing the global moments. This is done to limit the number of optimization

parameters for any given optimization step. Function maximization was performed using MATLAB’s fminsearch function, and initial

values for the distribution moments were chosen based on a least-squares regression assuming fixed values for n and A across all

odorant-ORN pairs. The result of the optimization in Equation 3 was found to be robust to choices of initial values.

The estimated k for all odorant-ORN pairs is summarized in Figure 3B. The black elements in the matrix indicate that the

corresponding ORN showed no activity within the tested concentration range, i.e., we were unable to fit a k value for these

odorant-ORN pairs. The standard deviation for the set of k’s was found to be sk = 0:45: Because the primary source of variance

in the data is variation in animal responses, we can treat this as an error bar on a single animal-trial measurement of k. The moments

of the distribution for Awere found to be A= 4:1; sA = 2:3; and the moments for the distribution of n= n=ln 10 were found to be n = 1:6;

sn = 0:6.
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Using these estimated distributions, single animal-trial values for the logistic function parameters Ai; ki; ni can be estimated

using maximum likelihood estimation. Maximization is performed on the probability of single animal data for a given odorant-ORN

pair q and animal i;which is similar to Equation 2, but without the integrals:

P
�
Yqi

��A;sA; kq; sk ; n; sn; sN

�
=PðYqi

��Ai; ki; ni;sNÞP
�
Ai jA; sA

�
P
�
ki j kq;sk

�
Pðni j n;snÞ: (4)

Doing this can help test the self-consistency of themodel. It is not guaranteed (or even expected) that the single-trial values ofAi; ki; ni
should match the distributions of A;k;n, but they should be similar, and they should fit the data well (Figures S4E–S4G). We find that

the values for Ai; ki; ni explain the data very well ðR2 = :989Þ (Figure S4D).

Analysis of the sensitivity matrix
To perform PCA on the sensitivity matrix, we first transformed the EC50 values to the lnð1=EC50Þ, such that odorant-ORN pairs with a

high sensitivity (small EC50) were now represented by large values, those that were less sensitive (large EC50) had small values, and

the logarithmic scale allowed for coverage of the broad range of EC50 values spanning several orders of magnitude. The remaining

pairs that that did not have an EC50 value (the missing data, represented by black squares in Figure 3B), represent pairs with a much

lower sensitivity andwere set to zero. Figure 4A shows the percentage of variance explained by each PC once PCAwas performed on

the lnð1=EC50Þ matrix. In comparison to a shuffled matrix (in which each row is randomly permuted), we found that only the first PC

was significantly different (p < 0.0001 for 1000 instances of shuffled data).

We fit the power law distribution using code from (Clauset et al., 2009). The resulting fitting index of 0.17 (large values mean better

fit to the power law for this metric) is larger than the threshold (0.1) needed to accept the power law hypothesis. Furthermore, we

performed a likelihood ratio comparison with other heavy tailed distributions (Clauset et al., 2009), using parameters best fit to

our data, and found that no other distributions are significantly better (need p < 0.1) than the power-law (Table S2).

Derivation of power law scaling of ORN population responses from sensitivity distribution
Here, we explain analytically the power law relation between odorant concentration and the population response of ORNs.

Under the same Hill equation we used to fit individual dose-response curves (Equation 1, here we set ymax = 1 for simplicity),

assume that (i) sensitivities follow a power law distribution Pð1=EC50Þfð1=EC50Þ�l�1 (or equivalently an exponential distribution

for k = lnð1=EC50Þ: PðkÞ = le�lðk�k0Þ; kRk0) (ii) the Hill coefficient n for all odorant-ORN pairs are the same and greater than

l (satisfied in the data as 1.42 versus 0.42). If so, the population response follows an approximate power law form rðcÞfcl for

concentrations c%e�k0 (which means the weakest response pair in the population has not reached the half level). For convenience,

we use the log scale of concentration and EC50: x = lnðcÞ; k = lnð1=EC50Þ and the logistic function in place of the Hill equa-

tion: y xð Þ= 1=ð1+ exp �n x + kð Þð ÞÞ.
This result can be intuitively obtained by considering the limiting case where the logistic function is infinitely steep (large Hill

coefficient) and is thus replaced by a step function. The population response combining a large number of odorant-ORN pairs

can be expressed as an integral: r xð Þ= RN
k0

y x; kð Þle�l k�k0ð Þdk; y x; kð Þ= 1=ð1+ exp �n x + kð Þð ÞÞ is the log-concentration. When yðx; kÞ

is a step function, the integral becomes PðkR� xÞ, which is essentially the cumulative density function for k. Given the distribution

of k, this is exactly an exponential function rðxÞ= elðx + k0Þ (or a power law function of c) for x%� k0, and saturates at larger

concentrations.

For the general case of logistic activation, the integral does not have a simple form expression but involves hyper-geometric func-

tions. However, we can derive a simple closed form approximation by approximating the logistic function fðxÞ= 1=ð1+ e�nxÞ using
piecewise exponential functions:

fðxÞz

8>><
>>:

enx � e2nx

2
; x%0

1� e�nx +
e�2nx

2
; x > 0

Such an approximation becomes asymptotically exact when the steepness n goes to infinity, or when the absolute value of x goes to

infinity. Substituting yðx; kÞwith this approximation, the integral splits into segments, over which the integrand are sums of exponen-

tial functions, and therefore can be easily integrated. This gives the closed form approximation of rðxÞ:

rðxÞ=

8>>><
>>>:

	
1+

2l2

n2 � l2
� l2

4n2 � l2



elðx + k0Þ � l

n� l
enðx + k0Þ +

l

2ð2n� lÞe
2nðx + k0Þ; x%� k0

1� l

n+ l
e�nðx + k0Þ +

l

2ð2n+ lÞe
�2nðx + k0Þ; x > � k0

For small concentrations, x%� k0, the leading term in the above expression is elðx + k0Þ, since l<n. This explains that the population

response is approximated by an exponential function with exponent l. Furthermore, the theory also predicts the magnitude (vertical
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shift in the log-log plot of population response as in Figure 3E), that is, rðxÞzð1 + 7=4 l2=n2qÞelðx+ k0Þ, which explains how the Hill

coefficient affect the population response.

Reverse-correlation analysis
White noise experiments were performed in a manner similar to those described in (Kato et al., 2014). Briefly, we used custom code

written in MATLAB to control odorant and water switching such that it followed an m-sequence. Calcium imaging was performed on

the axon terminal of individual ORNs at�30 frames per second. Calibration and an example of such a recording is shown in Video S2.

We then used a linear-nonlinear model to compare the m-sequence input to ORN responses during a 150 s interval (from 60 - 210 s).

An 18 s time window was used for the linear filter, of which 15 s represented stimulus history in order to ensure extraction of the full

filter dynamics (Figure 5B). The raw filter amplitudes across individual animals varied, possibly due to variations in GCaMP6mexpres-

sion levels or imaging quality, but the shape of normalized filters was comparable across animals (Figure S5A). Next, we applied the

linear filter to the data and compared this to the output in order to capture the nonlinear function. We found that a sigmoidal function

fits the nonlinear function well (Figure S5B). We then applied novel m-sequences on the same animal to validate the linear-nonlinear

model (Figure S5C) and found that they fit the data well. Peak and decay times for each filter were found by extracting the time points

corresponding to the maximum amplitude and half maximum amplitude of the decay phase, respectively. 454 filters were calculated

from the recording of 138 larvae responding to various m-sequence stimuli. Each of the 31 filters quantified in Figures 5F and 5G are

averaged across 10 animals.

Analysis of previous electrophysiology studies on odorant-ORN responses
To assess the concordance between electrophysiology and calcium imaging techniques, we applied our analysis toDrosophilaORN

electrophysiology data previously described in the literature. We used the following two datasets for comparison, 1) Figure 7B from

(Kreher et al., 2008) showing Or42a and Or42b responses to ethyl acetate across seven orders of magnitude in concentration,

2) Figure 1B from (Kreher et al., 2008) showing ORN responses to 26 odorants.

We fit the first dataset of ORN dose-response curves to Hill equations in which all parameters were free, as this electrophysiology

data was densely sampled across concentration (Figure S4H). The second dataset was used to compare correlations in the odorant-

ORN responsematrices and thuswe applied the simulated annealingmethod described above, to order ORNs and odorants for com-

parison with our data (Figure S4I).

DATA AND SOFTWARE AVAILABILITY

Data, code and software are available at https://github.com/samuellab/Larval-ORN.
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