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Abstract

A key question in theoretical neuroscience is the relation between the connectivity structure

and the collective dynamics of a network of neurons. Here we study the connectivity-dynam-

ics relation as reflected in the distribution of eigenvalues of the covariance matrix of the

dynamic fluctuations of the neuronal activities, which is closely related to the network

dynamics’ Principal Component Analysis (PCA) and the associated effective dimensionality.

We consider the spontaneous fluctuations around a steady state in a randomly connected

recurrent network of stochastic neurons. An exact analytical expression for the covariance

eigenvalue distribution in the large-network limit can be obtained using results from random

matrices. The distribution has a finitely supported smooth bulk spectrum and exhibits an

approximate power-law tail for coupling matrices near the critical edge. We generalize the

results to include second-order connectivity motifs and discuss extensions to excitatory-

inhibitory networks. The theoretical results are compared with those from finite-size net-

works and the effects of temporal and spatial sampling are studied. Preliminary application

to whole-brain imaging data is presented. Using simple connectivity models, our work pro-

vides theoretical predictions for the covariance spectrum, a fundamental property of recur-

rent neuronal dynamics, that can be compared with experimental data.

Author summary

Here we study the distribution of eigenvalues, or spectrum, of the neuron-to-neuron

covariance matrix in recurrently connected neuronal networks. The covariance spectrum

is an important global feature of neuron population dynamics that requires simultaneous

recordings of neurons. The spectrum is essential to the widely used Principal Component

Analysis (PCA) and generalizes the dimensionality measure of population dynamics. We

use a simple model to emulate the complex connections between neurons, where all pairs

of neurons interact linearly at a strength specified randomly and independently. We

derive a closed-form expression of the covariance spectrum, revealing an interesting long
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tail of large eigenvalues following a power law as the connection strength increases. To

incorporate connectivity features important to biological neural circuits, we generalize the

result to networks with an additional low-rank connectivity component that could come

from learning and networks consisting of sparsely connected excitatory and inhibitory

neurons. To facilitate comparing the theoretical results to experimental data, we derive

the precise modifications needed to account for the effect of limited time samples and hav-

ing unobserved neurons. Preliminary applications to large-scale calcium imaging data

suggest our model can well capture the high dimensional population activity of neurons.

1 Introduction

Collective dynamics in networked systems are of great interest, with numerous applications in

many fields, including neuroscience, spin glasses, social and ecological networks [1]. Many

studies of neuronal networks have focused on how certain statistics of dynamics depend on

the network’s connectivity structure [2–4], including the population average [5] and variance

[6] of pairwise correlations. These dynamic features can be estimated experimentally by

repeatedly recording a small number of neurons at each time. In this sense, they may be

regarded as local or marginal features of dynamics. On the other hand, certain global or joint
dynamic features may only be possible or efficient to estimate by recording a population of

neurons simultaneously. An important example is the eigenvalues of the covariance matrix,

which are complicated nonlinear functions of all the matrix elements. These eigenvalues arise

naturally when performing the widely used Principal Component Analysis (PCA) of popula-

tion activity, where they correspond to the amount of variance contained in each principal

component of the activity. Although one can in principle fill out the covariance matrix through

repeated pairwise recordings, the matrix is much more efficiently calculated from simulta-

neously recorded data. Furthermore, a sample covariance matrix calculated from simulta-

neously recorded data also requires particular methods to address the effect due to the finite

recording length (Section 3.7) which would be different from repeated recordings. Another

example of global dynamic features that has recently received substantial interest [7–11] is the

effective dimensionality of neural population activity. When describing the data distribution

in terms of linear subspaces, the dimensionality can be defined based on the moments of the

covariance eigenvalues. Many recent experimental studies have observed a low dimensional

dynamics of neurons in the brain [12, 13], and theoretical investigations have illustrated the

importance of having a low dimensionality for brain function and computation [14], such as

when representing stimuli [15] and generating motor outputs [13].

As the experimental techniques of measuring the activity of large population of neurons in

biological networks become increasingly available, new opportunities arise for studying how

the network’s connectivity structure affects these global aspects of population dynamics. In

this work, we study the eigenvalue distribution (i.e., spectrum) of the covariance matrix of

spontaneous activity in a large recurrent network of stochastic neurons with random connec-

tivity. We focus on several basic and widely used models of random connectivity, including

independent and identical Gaussian distributed connectivity [2] (Section 3.1), networks with

second-order connectivity motifs [5, 16–20] (Section 3.3), and random Excitation-Inhibition

(EI) networks (Section 3.5). Random connectivity has been a fundamental model in theoretical

studies of neuronal network dynamics [2, 8, 21]. It can be motivated as a minimal model to

capture the complex, disordered connections observed in many neuronal circuits, such as in

PLOS COMPUTATIONAL BIOLOGY Covariance spectrum of random recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010327 July 21, 2022 2 / 27

Funding: HS was partially supported by a NIH

grant from the NINDS (1U19NS104653), the

Swartz Program in Theoretical Neuroscience at

Harvard, and the Gatsby Charitable Foundation. YH

was partially supported by a start-up fund from

HKUST (R9407). The funders play no role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010327


the cortex. Some aspects of these covariance spectra might be distinct from those under

ordered, deterministic connectivity (Section 4.2).

The dynamics considered here is simple where the activity fluctuations around the steady-

state are described by a linear response [22, 23], which experimentally is related to spontane-

ous or persistent neural activity in absence of structured spatial-temporal stimuli. Despite the

simple dynamics and minimal connectivity model, we find the resulting spectrum has a con-

tinuous bulk of nontrivial shape exhibiting interesting features such as a power-law long tail of

large eigenvalues (Section 3.2), and strong effects due to the non-normality of the connectivity

matrix (Section E.2 in S1 Text). These covariance spectra highlight interesting population-

level structures of neuronal variability shaped by recurrent interactions that were previously

unexplored.

Using the theory of the covariance spectrum, we derive closed-form expressions for the

effective dimensionality (previously known for the simple random i.i.d. Gaussian connectivity

[6]) We show that the continuous bulk spectrum has the advantage over low-order statistics

such as the dimensionality thanks to its robustness to low rank perturbations (Section 3.3 to

3.5 and 3.8). Our analytically derived eigenvalue distributions can be readily compared to real

activity data of recurrent neural circuits or simulations of more sophisticated computational

models. We provide ready-to-use code to facilitate such applications (see Data Availability

Statement). An example of such an application for a whole-brain calcium imaging data is pre-

sented in Section 3.8.

2 Model

2.1 Neuronal networks with random recurrent connectivity

We consider a recurrent network of linear rate neurons driven by noise

t _xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

JijxjðtÞ þ xiðtÞ; i ¼ 1; . . . ;N: ð1Þ

Here xi(t) is the firing rate of neuron i. Jij describes the recurrent interaction from neuron j
to i. τ is a time constant describing how quickly the firing rates changes in response to inputs.

The network is driven by independent Gaussian white noise ξi(t) with variance σ2, that is, the

expectation hξi(t)ξj(t + τ)i = σ2δijδ(τ).

We focus on the structure of long time scale covariation in the network, which are

described by the long time window covariance Cij ¼ limDT!1
1

DT Cij;DT . Cij,ΔT is the covariance of

the summed activity over a window of ΔT: Cij,ΔT = hΔsi(t)Δsj(t)i, DsiðtÞ ¼
R tþDT
t Dxiðt0Þdt0. For

biophysical neurons, Cij,ΔT typically settles to its limiting value when ΔT> 50ms [24]. It can be

shown [25] that the long time window covariance C (also the zero-frequency covariance, see

Section 3.6) is

C ¼ s2ðI � JÞ� 1
ðI � JÞ� T: ð2Þ

Here I is the identity matrix, and A−1, AT are the matrix inverse and transpose

(A−T = (A−1)T). For simplicity we will set σ2 = 1 unless stated otherwise. The covariance

matrix C can also be estimated from experimental data consisting of simultaneously recorded

neurons (Methods). We consider generalizations beyond the long time window covariance in

Section 3.6.

Our analysis and results start from the covariance-connectivity relation Eq (2), which also

describes, or closely approximates, the network dynamics in other models (Section 5.2) includ-

ing networks of integrate-and-fire or inhomogeneous Poisson neurons [23, 26–28], fixed
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point activity averaged over whitened inputs, and structural equation modeling in statistics

[29]. These models provide additional motivations for the covariance (Eq (2)), which may

allow interpreting our results in experiments where the neural activity is driven by stimuli

[10].

For many biological neural networks, such as cortical local circuits, the recurrent connec-

tivity is complex and disordered. Random connectivity is a widely used minimal model to gain

theoretical insights on the dynamics of neuronal networks [2, 4]. We first consider a random

connectivity where

Jij � N ð0; g2=NÞ ð3Þ

are drawn as independent and identically distributed (i.i.d.) Gaussian variables with zero mean

and variance g2/N (referred subsequently as the i.i.d. Gaussian connectivity). The covariance

spectrum follows directly from results in random matrices [30, 31]. We then show how to gen-

eralize to other types of random connectivity, including: those with connectivity motifs (Sec-

tion 3.3), Erdős-Rényi random connectivity, networks with excitation and inhibition (Section

3.5). The theory we derived assumes the network is large and is exact as N!1, and we verify

their applicability to finite-size networks numerically. A list of variable notations is given in

Table 1 for ease of reference.

2.2 Covariance eigenvalues and dimensionality

Principal Component Analysis (PCA) is a widely used analysis of population dynamics, where

the activity is decomposed along orthogonal patterns or Principal Components (PCs). The

PCs are the eigenvectors of the covariance matrix C (Eq (37)), and the associated eigenvalues

λi are nonnegative and show the amount of activity or variance distributed along the modes.

In this work, we focus on the distribution of these covariance eigenvalues, described by the

(empirical) probability density function (pdf) pC(x) which is defined through the equality
R b
a pCðxÞðxÞdx ¼

1

N #fli 2 ða; b�g for all a, b. We also refer to pC(x) as the spectrum (which

should not be confused with the frequency spectrum obtained via Fourier transform). We will

Table 1. List of notations.

Notation Description

N number of neurons

C covariance matrix, Eq (2)

pC(x) pdf of eigenvalues of C, Section 2.2

x± support edges of pC(x)

J matrix of connection weights Section 2.1

σ2 variance of white noise input, Section 2.1

g connection strength var(Jij) = g2/N, (3)

gc maximum g constrained by stability

gr g/gc
κ ρ(Jij, Jji) reciprocal motif cumulant, Eq (13)

μ mean of eigenvalues 1

N

PN
i¼1
li

D dimension, Eq (4)

M number of time samples, Eq (37)

α N/M, Section 3.7

Ns number of sampled neurons, Section 3.7

f Ns/N, Section 3.7

https://doi.org/10.1371/journal.pcbi.1010327.t001
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derive the limit of pC(x) as N!1 and study how it depends on the connectivity parameters

such as g = Nvar(Jij).
The shape of pC(x) can provide important theoretical insights on interpreting PCA. For

example, it can be used to separate outlying eigenvalues corresponding to low dimensional

externally driven signals from small eigenvalues corresponding to fluctuations amplified by

recurrent connectivity interactions [32] (Section 3.8). the spectrum is also closely related to the

effective dimension of the population activity. In many cases, the linear span of the activity

fluctuations is full rank, N. Nevertheless, most of the variability is embedded in a much lower

dimensional subspace. A useful measure of the effective dimension, known as the participation

ratio [8, 33] is given by

D �
ð
PN

i¼1
liÞ

2

PN
i¼1
l

2

i

: ð4Þ

which can be calculated from the first two moments of pC(x). We will also derive explicit

expressions for D in random connectivity models.

3 Results

3.1 Continuous bulk spectrum with finite support

For networks with i.i.d. Gaussian connectivity (Section 2.1), there is one parameter g describ-

ing the overall connection strength. For stability of the fixed point and the validity of the linear

response theory around it, g is required to be less than 1 [2]. The parameter σ in Eq (2) just

scales all λi and thus is hereafter set to 1 for simplicity. Our main theoretical result is the fol-

lowing expression for the probability density function (pdf) of the covariance eigenvalues in

the large N limit (Section A in S1 Text),

pCðxÞ ¼
3

1
6

2pg2x2

X

x¼1;� 1

x 1þ
g2

2

� �

x �
1

9
þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � g2Þ
3xðxþ � xÞðx � x� Þ

3

s0

@

1

A

1
3

2

6
4

3

7
5;

x� � x � xþ:

ð5Þ

where

x� ¼
2þ 5g2 �

g4

4
�

1

4
gð8þ g2Þ

3
2

2ð1 � g2Þ
3

;
ð6Þ

and pC(x) = 0 for x> x+ and x< x−. The distribution has a smooth, unimodal shape and is

skewed towards the left (Fig 1C). Near both support edges, the density scales as jx � x�j
1
2 (Sec-

tion A.1 in S1 Text).

The above result for the distribution pC(x) follows from the derivation of the circular law

distribution of the eigenvalues of the random matrix J [30, 31, 34, 35]. However, to the best of

our knowledge, this is the first exposition of the explicit expression for the spectrum of C,

(Eq (5), which is essential for fitting to empirical data Section 3.8) and for the study of network

dynamics. We emphasize that pC(x) does not have a simple relation to the spectrum of J
because J is a non-normal matrix (i.e., JTJ 6¼ JJT). This point is further elaborated in Section

3.3.2. Although the above result is derived in the large N limit, it matches accurately the spec-

trum of C in networks of sizes of several hundred, as demonstrated in our numerical results,

Fig 1A and 1B (see also Fig A in S1 Text for additional realizations and trial-averages). In PCA
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and other analyses, the covariance eigenvalues are plotted in descending order vs. their rank

[10, 36]. We can use the theoretical pdf Eq (5) to predict this rank plot by numerically solving

the inverse cumulative distribution function (cdf), i.e., quantile function, at probability
N� 1

2

N ;
N� 1� 1

2

N ; . . . ;
1
2

N. The closed form pdf (Eq (5)) allows for using the highly efficient Newton’s

method to compute the quantiles. Fig 1E and 1F show a good agreement between the theory

Eq (5) and a single realization of a N = 100 random network.

3.2 Long tail of large eigenvalues near the critical coupling

As g approaches the critical value of 1, the upper limit of the support x+ diverges as (1 − g2)−3

(Section 5.3 in Methods). This corresponds to an activity PC with diverging variance and is

consistent with the stability requirement of g< 1. Note that the lower edge x− is always

bounded away from 0 and has a limit of 4

27
as g! 1. Analyzing the shape of pC(x) for large x in

the critical regime g! 1 yields a long tail of large eigenvalues, following a power law (Fig 2A

and 2B, Methods)

pCðxÞ �
ffiffiffi
3
p

2p
x� 5

3: ð7Þ

As shown in Fig 2A, the power-law shape of pC(x) is apparent for g = 0.7 and does not

require a g very close to 1.

Fig 1. Covariance spectrum under random Gaussian connectivity. A. Compare theory (Eq (5)) with finite-size network covariance using Eq (2) at

N = 100, g = 0.5. The histogram of eigenvalues is a single realization of the random connectivity. B. Same as A. at N = 400. C. Covariance eigenvalue

distribution at various value of g. As g increases the distribution develops a long tail of large eigenvalues. D. Dimension (normalized by network size) vs

g. The dots and error bars are mean and sd over repeated trials from finite-size networks (Eq (2) and use Eq (4)). Note some error bars are smaller than

the dots E. Covariance eigenvalues vs. their rank (in descending order). The circles are covariance eigenvalues from a single realization of the random

connectivity with N = 100 (Eq (2)). The crosses are predictions based on the theoretical pdf (Eq (5)). F. Same as E. but for g = 0.9 and on the log-log

scale. The red dashed line is the power law with exponent −3/2 derived from Eq (5), see Section 3.2.

https://doi.org/10.1371/journal.pcbi.1010327.g001
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To better elucidate the range of validity of the above power law, we consider the regime

where 1 − g2� 1 and x� 1. Define z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x=xþ

p
where x+/ (1 − g2)−3 is the upper edge

of the support of pC(x). Then,

pCðxÞ �
ffiffiffi
3
p

2p
x� 5

32�
1
3FðzÞ ð8Þ

where F(z) = (1 + z)1/3 − (1 − z)1/3. Thus, far from the spectrum upper edge, z! 1 and we

obtain Eq (7), whereas near the upper edge z! 0 and pCðxÞ � 3
� 1

22
� 1

3

p
x�

5
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x=xþ

p
, which is

the expected square-root singularity near the edge.

The power-law approximation of the probability density function Eq (5) translates to an

approximation for the cumulative distribution function FCðxÞ � 1 � 3
ffiffi
3
p

4p
x� 2

3 This also means a

power law in the rank plot has an exponent of −3/2 when connection strength g is close to the

critical value (Fig 1F), providing an alternative mechanism based on recurrent circuits for the

experimental observations of power-law distributed covariance eigenvalues in the literature

[10, 36] (see also the model Eq 31 and discussions in Methods).

Because the probability density is small in the power-law tail, large eigenvalues can appear

to be sparsely located (Fig 1A) and potentially mistaken for statistical outliers. This under-

scores the importance of knowing the exact distribution and support edges for interpreting

PCA results of population activity, topics which we revisit later (Section 3.8). Note that a long

tail in the spectrum is a distinct feature of correlations arising from the recurrent network

dynamics (see also a heuristic explanation in Section E.3 in S1 Text). For example, for the

Marchenko–Pastur law that is often used for modeling empirical covariance spectra, the upper

edge of its support relative to the mean is bounded by 4 (Methods). In contrast, the same ratio

for pC(x) (Eq (5)) can be arbitrarily large as O((1 − g2)−2) (see below for calculating the mean).

This highlights the difference between covariance generated by finite samples of noise and cor-

relations generated by the recurrent dynamics.

The long tail of the eigenvalue distribution is also reflected by a low effective dimension (Eq

4). In Section B in S1 Text we show that the mean and second moment of the eigenvalue distri-

bution above, are given by

EðlÞ ¼ ð1 � g2Þ
� 1
; Eðl2

Þ ¼ ð1 � g2Þ
� 4
: ð9Þ

Fig 2. Approximate power-law tail. A. The exact pdf (solid line) of the covariance spectrum compared with the power-law approximation (dashed

line, Eq (7)) at g = 0.7. Inset shows the log-log scale. B. Same as A. for g = 0.8. The approximation improves as g approaches the critical value 1. C. The

log error between the exact pdf and approximation jlogðpðxÞÞ � logðp̂ðxÞÞj as a function of g and “distance” from the support edges. We quantify this

“distance” as the minimum ratio of x/x− and
ffiffiffiffiffiffiffiffiffiffi
xþ=x

p
(more details and motivations in Section A.2 in S1 Text. The plot shows the log error is small when

this ratio is large, which means x being far away from the edges. The dashed line shows the attainable region of the ratio which increases with g.

https://doi.org/10.1371/journal.pcbi.1010327.g002
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which yields for the dimension

D ¼ Nð1 � g2Þ
2
: ð10Þ

In particular, the relative dimension with respect to the network size D/N vanishes as g
approaches 1 (Fig 1D). In comparison, D/N for the Marchenko–Pastur law (Eq 35) is at least 1

2
.

While these low-order moments can be derived from previous methods (see [6] and Section

B in S1 Text, and also a parallel work [37]), our method allows for the derivation of higher-

order moments, such as,

Eðl3
Þ ¼ ð1 � g2Þ

� 7
ð1þ 2g2Þ; Eðl4

Þ ¼ ð1 � g2Þ
� 10
ð1þ g2Þð1þ 5g2Þ: ð11Þ

and in general,

Eðln
Þ / ð1 � gÞ� 3ðn� 1Þ� 1

; as g ! 1� ð12Þ

3.3 Impact of the asymmetry in connectivity

We next consider generalizations of random connectivity beyond the i.i.d. Gaussian model

(Sction 2.1). An important feature of biological neural networks is the presence of motif struc-

tures at various scales [16–18, 38], which correspond to an overabundance of certain sub-

graphs, relative to their frequency in an edge-shuffled network (i.e., an i.i.d. random graph

with matching connection probability). Using a random connectivity model with Gaussian

distributed entries [38] Section C.1 in S1 Text, we can study the effects of the four types of sec-

ond order motifs (i.e., consisting of two edges). Among them, the diverging, converging, and

chain motifs correspond to a low-rank component L of the connectivity J ¼ Lþ ~J , where the

remaining part ~J contains only reciprocal motifs. Based on the results in Section 3.4, we can

focus below on studying the covariance spectrum under the simpler connectivity ~J with only

reciprocal motifs, because the bulk spectrum of J ¼ Lþ ~J is remains the same when adding

the low-rank L (see examples in Section 3.4 and Section C in S1 Text). Note that the magnitude

of diverging, converging, and chain motifs in the original connectivity still indirectly affect the

bulk covariance spectrum by affecting the parameters g and κ (see below) of ~J (see Section C.1

in S1 Text for the details of this relation).

For ease of notation, we still use J to represent a random connectivity matrix with poten-

tially reciprocal motifs (~J described above). This is equivalent to varying the degree of asymme-

try of J [31]. In this case, each component of J is Jij � N ð0; g2=NÞ but Jij and Jji are correlated,

k ¼ rðJij; JjiÞ; ð13Þ

with −1� κ� 1. All other correlations are zero.

3.3.1 Symmetric and anti-symmetric random networks. First, we consider two extreme

cases for the reciprocal motifs: κ = 1 corresponding to Jij = Jji, and κ = −1 corresponding to

anti-symmetric matrix (or skew-symmetric Jij = −Jji). These cases are much simpler to analyze,

because J is a normal matrix so pC(x) can be derived from the well known eigenvalue distribu-

tion of J [31]. For symmetric random connectivity,

pC;g;k¼1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2 � 1Þx � 1þ 2

ffiffiffi
x
pp

4pg2x2
; x 2 ðx� ; xþÞ; x� ¼ ð1� 2gÞ� 2

: ð14Þ
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Here stability requires that g < 1

2
. For anti-symmetric random connectivity,

pC;g;k¼� 1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2 þ 1Þx � 1

p

2pg2x2
ffiffiffiffiffiffiffiffiffiffiffi
1 � x
p ; x 2 ðð1þ 4g2Þ

� 1
; 1Þ: ð15Þ

Here the network is stable for all g. The derivations are given in the Section D in S1 Text.

Since the general shape and trend depending on g of the spectrum in the simpler symmetric

case (Fig 3A) is qualitatively similar to the i.i.d. case (Fig 1C), one can use it to gain intuition,

for example, of the thin tail of large eigenvalues as g approaches its critical value.

Quantitatively using the equations above, we see that pC(x) of the symmetric random net-

work (Fig 3A) has a power-law tail analogous to Eq (7) as g! 1/2 (i.e., large x) but with a dif-

ferent exponent from the i.i.d. case (Eq 7),

pC;g;k¼1ðxÞ �
ffiffiffi
2
p

p
x� 7

4: ð16Þ

The pC(x) of the anti-symmetric random network (Fig 3B) does not have a long tail as the

upper limit of the support is always 1. Since J here is a normal matrix, this qualitative difference

from the i.i.d. random connectivity can be understood considering the eigenvalues of J [31].

The eigenvalues of J all lie on the imaginary axis and therefore never approach 1. Thus, the

eigenvalues of the covariance matrix do not develop a long tail when increasing g.

3.3.2 Connectivity with general asymmetry. For the Gaussian random connectivity with

κ = ρ(Jij, Jji), −1 < κ< 1, we have derived an implicit equation for pC,g,κ(x) in the large N limit

based on the results in [31] (Section E in S1 Text). Although a closed-form expression can be

derived using the root formula for quartic equations, it seems quite cumbersome, hence we

show here the numerical solutions of this equation. For a fixed g, as κ increases, the distribu-

tion broadens on both sides (Fig 4C). Intuitively, these effects (also Fig 4B) can be understood

due to the change of the critical g for stability, which is now given by gc = (1 + κ)−1 (based on

the spectrum of J [31]). As κ increases, the relative coupling strengthgr = g/gc = g(1 + κ), which

is also the maximum real part of J’s eigenvalues [31] increases, and the shape of the spectrum

changes similar to increasing g in the case of i.i.d. connectivity (Fig 1C). This motivates us to

further compare the distributions pC,g,κ(x) with the same gr to study effects due to κ beyond

changing gr. As shown in Fig 4D, when fixing the relative strength gr the distribution narrows

as κ increases.

Fig 3. Covariance spectrum for the symmetric and anti-symmetric random connectivity. A. The pdf of a covariance spectrum with

random symmetric J with different g (note g < 1

2
for stability). B. Same as A., but for random anti-symmetric Jij = −Jji. The pdf diverges at

x = 1 as j1 � xj�
1
2.

https://doi.org/10.1371/journal.pcbi.1010327.g003
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Consistent with the above results, we have shown (Section E.1 in S1 Text) that for all inter-

mediate values of −1 < κ< 1, the critical covariance spectrum has an asymptotic power-law

tail with the same exponent as the i.i.d. random case (Eq (7))

pCðxÞ �
ffiffiffi
3
p

2p
ð1 � kÞ

1
3ð1þ kÞx� 5

3; as x!1; g ! gc ¼ ð1þ kÞ
� 1 ð17Þ

In comparison, the κ = ±1 are singular cases in Eq 17 and have a different limiting power-

law behavior (an exponent of � 4

7
and no long tail). This is intuitively consistent with the spec-

trum of J which becomes confined on a line for κ = ±1 rather than in an ellipses for −1< κ< 1

[31] (see Section E.1 in S1 Text for more discussion).

The shape changes of pC,g,κ(x) with reciprocal motifs are also reflected by the dimension

measure, for which we derived a closed-form expression (Section E in S1 Text)

D ¼ N
m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðg2 � yÞ

p

ðym1 þ 1Þ
2
ðg2m1 þ 1Þ

; m1 ¼
2y � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðg2 � yÞ

p

2ðg2 � y
2
Þ

; y ¼ g2ð1þ kÞ: ð18Þ

Here μ1 is the mean of the distribution. Comparing with Eq 10, this shows the nontrivial

dependence of dimension on the reciprocal motif strength κ. As g! gc = (1 + κ)−1,

g2 � y
2
¼ g2ð1 � g2

r Þ ! 0. The numerator of μ1 is at least 2θ − 1� 2/(1 + κ) − 1> 0. Therefore

μ1 diverges as Oðð1 � g2
r Þ
� 1
Þ. Since 1 + 4(g2 − θ)� 1 + 4(g2 − g)� (1 − 2/(1 + κ))2 > 0, we have

D/N vanishes as Oðm� 2
1
Þ ¼ Oðð1 � g2

r Þ
2
Þ. The above limits under the critical g are similar to the

Fig 4. Impact of reciprocal motifs. A. Compare theoretical covariance spectrum for random connectivity with reciprocal motifs

and a finite-size network covariance using Eq (2)(g = 0.4, κ = 0.4, N = 400). B. The impact of reciprocal motifs on dimension for

various gr = g/gc (Eq (18)). For small gr, the dimension increases sharply with κ. C. The spectra at various κ while fixing g = 0.4.

The black dashed line is the i.i.d. random connectivity (κ = 0). D. Same as C. but fixing relative gr = 0.4 to control the main effect

(see text). The changes in shape are now smaller and the support narrows with increasing κ.

https://doi.org/10.1371/journal.pcbi.1010327.g004
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κ = 0 case, Eq (10). Consistent with the shape changes, the dimension decreases with reciprocal

motifs when fixing g and increases when fixing gr (Fig 4B).

The general asymmetric random connectivity also provides an example of the strong effect

of J being a non-normal matrix on the covariance spectrum. By continuity, one may expect

that as κ decreases towards −1, the shape of pC,g,κ(x) will become similar to that of the anti-

symmetric network pC,g,κ = −1(x), which is bimodal for sufficiently large g (i.e., has another

peak in addition to the divergence at 1, Fig 3B). Indeed, assuming a normal J predicts a covari-

ance spectrum that is bimodal with a non-smooth peak in a large region of −1 < κ< 0 and g
(Fig H in S1 Text). Intriguingly, the actual spectrum pC,g,κ(x) is unimodal for all but a minus-

cule region of (κ, g) where κ< −0.95, indicating a suppression of a bimodal spectrum under

negative κ due to the non-normal J (Section E.2 in S1 Text).

3.4 Adding low rank connectivity structure

An important property of the spectrum of C is the robustness of its bulk component to the

addition of low rank structured connectivity. Many connectivity structures that are important

to the dynamics and function of a recurrent neuronal network can be described by a full rank

random component plus a low rank component [39, 40]. For example, such components may

arise from Hebbian learning [41] and by training neural networks by gradient decent [42]. A

simple case is where we add a rank k structured matrix that is deterministic or independent to

the random component [43, 44]. As shown in Section C in S1 Text, in large networks, the bulk

covariance spectrum remains unchanged, but the low rank component may give rise to at

most 2k outlying eigenvalues. This is illustrated by the example of rank-1 perturbation to J
with i.i.d. Gaussian entries in Fig 5C and 5D, where the expected location of the outliers in the

covariance spectrum can be predicted analytically (Fig 5E and 5F and Section C.3 in S1 Text).

This is in contrast to the spectrum of J, where the same perturbations can lead to an

unbounded number of randomly located eigenvalues [43, 45] (Fig 5A and 5B). In sum, the

bulk spectrum of covariance is robust against low rank perturbations to the connectivity. Note,

however, the relevance of the bulk spectrum for the network dynamics depends on the location

of outliers. Outliers to the right of the bulk spectrum may indicate potential instability of the

dynamics even for g< 1, as discussed in the example below.

3.5 Sparse excitatory-inhibitory networks

The Gaussian random connectivity has a non-zero connection weight for all pairs of neurons

with probability 1, where many biological networks are sparsely connected. In addition, each

neuron has both excitatory (positive) and inhibitory (negative) weights, in contrast to many

neuronal networks that obey Dale’s Law, namely all neurons are either excitatory (with all out-

going weights positive) or inhibitory (with negative outgoing weights). We consider here a

simple model of E-I network, consisting of N/2 excitatory and N/2 inhibitory neurons. The

probability of each connection Jij to be nonzero, which may depend on the types of neurons i
and j, is Kαβ/N, α, β = E, I. Thus, the mean number of inputs to a neuron of type α from a pop-

ulation of type β is Kαβ/2. All excitatory non-zero connections are of strength w0=
ffiffiffiffiffiffiffi
Kab

p
and

the inhibitory connections are � w0=
ffiffiffiffiffiffiffi
Kab

p
. We assume that Kαβ = kαβK where kαβ = O(1) and

K� N.

To map this architecture on to the one studied above, we adopt the framework of [21] and

consider the equivalent Gaussian connectivity with matching variance for each Jij. Importantly,

the choice of connection probabilities and weights ensures that var(Jij) is w2
0
=N (to the leading

order for N� 1) regardless of the cell type of neuron i, j. This allows us to define the effective
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synaptic gain as g2 ¼ w2
0

for all neurons. The mean of the connections between a presynaptic

neuron of type β and postsynaptic α is EðJijÞ ¼
ffiffiffiffiffiffiffi
Kab

p
wb=N where wE = w0 and wI = −w0. Thus,

we can write Jij as a zero-mean i.i.d. Gaussian matrix with uniform variance w2
0
=N and a rank-

2 matrix of the means. As stated in Section 3.4, in such a case the bulk spectrum of the neurons’

covariance matrix is the same as Eq (5). In addition there are at most 4 outlier eigenvalues. For

K� 1, from the analysis of [21], the stability of the recurrent dynamics of a linear network

with the above connectivity amounts to the requirement that all eigenvalues of the 2 × 2 matrix

Mab ¼
ffiffiffiffiffiffi
kab

p
wb have negative real parts. Fulfilling this condition by choosing appropriate val-

ues for kαβ (see example in Fig 6A and Section C.3 in S1 Text) guarantees that the outlier(s)

due to the nonzero means are to the left of the bulk covariance spectrum so that the largest

eigenvalue is x+(g), Eq (6). For K = O(1), the results in [43] show that the above condition is

sufficient but not necessary for stability. For example, when all kαβ are equal to k, which corre-

sponds to a balance of excitation and inhibition [45], all eigenvalues of M are 0 and the dynam-

ics is stable for g< 1 for large N. At the same time, there can be two outlying eigenvalues on

the two sides of the bulk covariance spectrum (Fig 6B), whose expected location can be pre-

dicted (Section 3.4 and Section C.3 in S1 Text). Several additional examples including all

inhibitory networks are considered in the Section F in S1 Text.

3.6 Frequency dependent covariance

We have so far focused on the long time window covariance matrix. This would be especially

suitable for neural activity recordings with limited temporal resolution such as calcium

Fig 5. Robustness of the covariance spectrum to low rank perturbations of the connectivity. A. Eigenvalues of a Gaussian random connectivity J
(Eq (3)), g = 0.4, N = 400. As N!1, the limiting distribution of eigenvalues is uniform in the circle with radius g ([34] red solid line). The black

dashed line is the 0.995 quantile of the eigenvalue radius calculated from 1000 realizations. B. Same as A. but for the rank-1 perturbed J + xuvT.

u ¼ ð1; 1; . . . ; 1Þ
T
=
ffiffiffiffi
N
p

, vi � i:i:d: N ð0; 1=NÞ and x = 4.03. This example also corresponds to adding diverging motifs (Section 3.3 and Section C.1 in

S1 Text). C. The histogram of covariance eigenvalues (Eq (2)) under the J in A. D. The bulk histogram of eigenvalues with J + xuvT has little change and

remains well described by the Gaussian connectivity theory (red line, Eq (5)). Besides the bulk, there are two outlier eigenvalues to the left and right

(inset, arrows) E,F, Analytical predictions (solid and dashed lines) of the outlier locations given g and |x| when u, v are (asymptotically) orthogonal unit

vectors that are independent of J (see other cases in Section C.3 in S1 Text). The y-axis is the outlier location subtracting the corresponding edge x±, Eq

(6), so it is zero for small |x| before the outlier emerges (dashed line). The dots are the mean of the smallest (for the left outlier) or largest (right outlier)

eigenvalues averaged across 100 realizations of the random J, N = 4000. The errorbars are the standard error of the mean (SEM, many are smaller than

the dots).

https://doi.org/10.1371/journal.pcbi.1010327.g005
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imaging [46]. Temporal structures of correlation beyond the slow time scale can be described

by the frequency covariance matrix (or coherence matrix)

CijðoÞ ¼ lim
DT!1
hDsiðoÞDs

y

j ðoÞi; ð19Þ

where DsiðoÞ ¼ 1ffiffiffiffi
DT
p
R DT

0
De� ioxiðtÞdt is the Fourier transform of the neural activity and z† is

the complex conjugate. Cij(ω) can also be calculated by the Fourier transform of the time-

lagged cross-correlation functions Cij(τ) = hxi(t)xj(t − τ)i (Wiener-Khinchin theorem). Analo-

gous to Eq (2) C(ω) obeys [25],

CðoÞ ¼ s2jaðoÞj2ðI � aðoÞJÞ� 1
ðI � ayðoÞJÞ� T: ð20Þ

Here z† is the complex conjugate and |z| is the norm for a complex z. The transfer function

a(ω) = (1 + iτω)−1 summarizes the dynamics of single neurons in the network and corresponds

to a response filter of e−t/τ/τ, t> 0 for the model of Eq (1) (see also Section 5.2). The long time

window covariance we have studied corresponds to C(ω = 0) (Wiener-Khinchin theorem).

For the i.i.d. Gaussian random connectivity J, we can show that the spectrum of C(ω) is

given by the same Eq (5) for C(0) (up to a constant scaling) by replacing g with a frequency

dependent g(ω) (compare with Eq (3))

gðoÞ ¼ jaðoÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N varðJijÞ

q
¼

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2o2
p : ð21Þ

We can use Eq (21) to study the scaling of frequency as g approaches the critical value of 1.

In many cases, we can expect that the neuronal and synaptic dynamics lead to a smooth effec-

tive low-pass filtering of the recurrent input, such that for small frequency g(0) − g(ω)/ ω2.

For the specific g(ω) in Eq (21), this can be directly verified. The low-pass filtering implies that

the frequencies showing a critical covariance spectrum are those with joj ¼ o ð1 � gÞ
1
2

� �
.

Note, however, the simple replacement by an effective g may not apply to a connectivity

matrix that does not have i.i.d. entries. For example, for networks with non-zero reciprocal

motifs, the covariance spectrum changes qualitatively with frequency (Section D.1 in S1 Text).

Fig 6. EI networks. A. One realization of the covariance eigenvalues by Eq (2) with an EI network satisfying the

stability condition (see text). The bulk spectrum is well described by the Gaussian random connectivity theory (solid

line, Eq (5)). There is one small outlier to the left of the bulk (arrow). The parameters are g = w0 = 0.4,
ffiffiffiffiffi
kee

p
¼ 0:5,

ffiffiffiffiffi
kei

p
¼ 1:5,

ffiffiffiffiffi
kie

p
¼ 1,

ffiffiffiffiffi
kii

p
¼ 2, K = 60, N = 1000. To improve the accuracy of the theory to finite K, N, here we use a

slightly modified connection weight, w0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kabð1 � Kab=NÞ

q
, for all excitatory non-zero connections, and similarly

� w0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kabð1 � Kab=NÞ

q
for inhibitory connections, such that varðJijÞ ¼ w2

0
=N holds exactly for finite N. B. Similar as

A but for balanced EI network (see text) with kαβ = k = 1, g = 0.4, K = 40, N = 400. Note there are two outliers on both

sides of the bulk.

https://doi.org/10.1371/journal.pcbi.1010327.g006
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3.7 Sampling in time and space

The theoretical spectra we have discussed are based on the exact covariance matrix (Eq (2)).

For neural data, this is equivalent to the limit of the sample covariance Ĉ (Eq (37)) when the

number of time samples M is much larger than the number of neurons N. Note that if the

activity data is first averaged or summed over a time window/bin (ΔT in Eq (37)) before calcu-

lating the sample covariance, then M is the number of bins. However, many large-scale neural

recordings are in the so-called high dimensional regime, where N and M are comparable, that

is, the ratio α = N/M remains finite or even greater than 1 for large N, M. It is thus important

to study this effect of temporal sampling on the covariance eigenvalues to better relate to

experimental data [7].

We refer to Ĉ and pĈðxÞ as the time-sampled covariance and spectrum. The relation

between the original spectrum pC(x) and the time-sampled spectrum pĈðxÞ for a finite α� 0

has been studied in [47]. The authors derived a general relation between the generating func-

tion of the eigenvalue distribution WðzÞ ¼
P1

n¼1
znmn, where μn is the n-th moments of the

eigenvalue distribution, and the counterpart ŴðzÞ for the sampled distribution,

Ŵðz � ð1þ aWðzÞÞÞ ¼WðzÞ; and conversely W
z

1þ aŴðzÞ

� �

¼ ŴðzÞ: ð22Þ

We give an alternative derivation of this result using free probability [48–50] (Section H in

S1 Text), which allows us to also generalize to the spatial sampling case (see below). For sim-

plicity, here we describe the results for 0� α� 1. For α> 1 where time samples are severely

limited, the spectrum of the N −M nonzero eigenvalues can be calculated with small modifica-

tions (Section H.2 in S1 Text).

One corollary of Eq (22) is a simple formula for how the (relative) dimension changes

under time sampling

DðĈÞ ¼ DðCÞ
N

N þ aDðCÞ
; D̂ðĈÞ ¼

D̂ðCÞ
1þ aD̂ðCÞ

: ð23Þ

These formulas show that both D and D̂ ¼ D=N decrease with α (fewer time samples).

The relations Eqs (22) to (23) apply to any covariance matrix spectrum. For example, it

reproduces the time-sampled dimension derived in [7] for a different model of covariance

C. We now apply Eq 22 to the case of i.i.d. Gaussian connectivity to derive specific results

of the time-sampled spectrum pĈðxÞ≕ pg;aðxÞ. Here Eq (22) becomes a cubic equation and

can be solved analytically (Section H.3 in S1 Text). Consistent with the dimension, when α
increases from 0 to 1, the support of the time-sampled distribution expands from both

sides (Fig 7A). In particular, for any fixed α < 1 (so Ĉ is positive definite), the left edge of

the support x− decreases with g but is always bounded away from 0 even as g! 1, where

x� ! 2

27
ð1þ 3aÞ

3
2 þ 1 � 9aÞ

� �
(see also Fig L in S1 Text). Interestingly, the approximate

power law of pC(x) (Eq 7) still holds under time sampling for any fixed α as g! 1 (Section

H.3 in S1 Text).

Another challenge for fitting to neural data is that often only a subset of neurons are

observed instead of the entire local recurrent network. The unobserved neurons have an

impact on the dynamics and affect the eigenvalues of the observed covariance matrix. We

study this by considering randomly selecting Ns = fN, 0< f� 1 neurons and define their

covariance ~C as the space-sampled covariance. Using the free probability approach, we derive

similar results as Eqs (22) and (23) (Section I in S1 Text) and apply them to derive the
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spectrum and dimension for the i.i.d. Gaussian connectivity under spatial sampling. In partic-

ular, the relative dimension D̂ð~CÞ ¼ Dð~CÞ=ðfNÞ increases with spatial sampling (i.e., decrease

f) which is consistent with the shape of the spectrum where its support narrows in (Fig 7).

Lastly, the power-law feature is also preserved under spatial sampling. For any fixed 0< f� 1,

we show that as g! 1 and x!1 (see examples with g close to 1 in Fig L in S1 Text)

pg;f ðxÞ �
ffiffiffi
3
p

2p
f � 1

3x� 5
3: ð24Þ

3.8 Fitting the theoretical spectrum to data

Our theory for the bulk covariance spectrum can be fitted to neural activity whenever the

covariance eigenvalues can be calculated. The best-fitting theoretical spectrum can be found

by minimizing the L2 or L1 error between the empirical and theoretical cumulative distribu-

tions (Methods) with respect to parameters such as g. We note that the availability of closed-

form or analytic solutions of the theoretical distributions makes this optimization highly

efficient.

In many settings, the value of the baseline neuronal variance σ2 in Eq (2) is not known. But

this can be easily addressed by scaling both the observed and the predicted eigenvalues to have

a mean equal to 1. After fitting the connectivity parameter g for the normalized eigenvalues, σ2

can then be estimated using the original means of data and theory. For our theoretical spectra,

the mean μ of covariance eigenvalues is available in closed-form (Eqs (9) and (18)), and the

scaled pdf is easily found as pR(x) = μpC(μx).

Furthermore, the recorded neural activity is sometimes normalized for each neuron (e.g.,

by converting activity to z-scores). In this case, we need to analyze the eigenvalues of a correla-
tion matrix whose entries are normalized as Cij=

ffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. Interestingly, we found that the corre-

lation eigenvalue distribution for our random connectivity models in the large N limit is the

same as the rescaled pR(x) above. This is because the diagonal entries of C become uniform

(thus converge to μ) for large N (Section J in S1 Text).

The fitting of the spectrum is also robust to outliers in the covariance eigenvalues (Section

3.4). In Section K in S1 Text we demonstrate an example where a rank-2 component is added

to the covariance C. Since in practice the rank of the perturbation is unknown a priori, we use

Fig 7. Effects of sampling in time and space on the covariance spectrum. A. For the i.i.d. Gaussian random connectivity, how different levels of time

samples α change the spectrum (Eq (22)). The non-sampled case corresponds to α = 0. g is fixed at 0.4. Inset: The relative dimension D̂ vs. α (Eq 23).

The dots correspond to the pdfs with matched colors. B. Same as A. but for the spatial subsampling (Section I.2 in S1 Text), at g = 0.5. The non-sampled

case corresponds to f = 1. The relative dimension in the inset is based on Section I.1 in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010327.g007

PLOS COMPUTATIONAL BIOLOGY Covariance spectrum of random recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010327 July 21, 2022 15 / 27

https://doi.org/10.1371/journal.pcbi.1010327.g007
https://doi.org/10.1371/journal.pcbi.1010327


all eigenvalues in the fitting, and the fitted g is highly accurate despite the presence of outliers.

We can also use the fitted g to help identify the outliers by separating them out based on the

upper edge of pC(x) support [32, 51].

We conclude with a preliminary application to whole-brain calcium imaging data in larval

zebrafish. In [52], activities of the majority of the neurons in the larval zebrafish brain were

imaged simultaneously during presentations of various visual stimuli and grouped into func-
tional clusters based on their response similarity. These clusters reveal potential neural circuits

and, in some cases, reveal a good match with known brain nuclei. Here we select a few clusters

that contain a large number of neurons and are anatomically localized (Fig 8B). For each clus-

ter, we calculate its sample correlation matrix during the spontaneous condition (no stimulus

was presented) and then fitted the eigenvalues to the time-sampled spectrum with i.i.d. Gauss-

ian connectivity (Section 3.7). Here the calcium activity is used but the correlation matrix is

expected to be approximately the same if firing rates or long time window spike counts were

used (Section K in S1 Text). Despite the simplicity of the model with only one parameter to

tune, the results show good agreement with data and is significantly better than fitting using

the Marchenko–Pastur law (Fig 8C), which models spatially independent noise (Section 5.4).

Therefore, our theory provides a quantitative mechanistic explanation of how a long tail of

covariance eigenvalues or equivalently low dimensional activity occurs in recurrent neural

circuits.

4 Discussion

In this work, we studied the eigenvalue density distribution of the covariance matrix of a ran-

domly connected neuronal network, whose activity is approximated as noise driven linear fluc-

tuations around a steady state. We derived an explicit expression for eigenvalue distribution in

the large-network limit analytically in terms of the statistics of the connectivity such as cou-

pling strength and second-order motifs. Our results also include closed-form expressions for

Fig 8. Fitting the theoretical spectrum to data. A. The anatomical map of neurons (dots) in the example functional clusters (different colors) across a

larval zebrafish brain (scale bar is 50 μm, see text and [52]). B. Comparing the fitting error of the time-sampled random connectivity theory (Section

3.7) and the Marchenko–Pastur law. The errors are measured by Eq (38). The red dashed line is the diagonal. D̂ ¼ D=N labeled on each plot is the

relative dimensionality (Eq 4). The calcium activity is recorded at a frame rate of 2 Hz and a total of 600 frames of spontaneous activity [52] are used in

here. See more details in Methods. Fitting results for all other clusters are in Fig O in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010327.g008
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the dimension measure generalizing known results [6]. Some of these dimensionality results

are also derived in a recent parallel work [37], whereas the shape of the covariance spectrum

was not studied in [37]. Knowing the exact shape and support of the bulk spectrum can facili-

tate separating outlying eigenvalues corresponding to low dimensional structure (coming

from other unmodeled effects such as external input) from variability due to noise [51] (see an

example in Fig N in S1 Text). The shape of the bulk spectrum reflects structured amplification

of the neuronal noise by the random recurrent interactions. Since the bulk spectrum is not

altered by low rank perturbations to the connectivity or to the activity (Section C in S1 Text),

this allows for distinguishing different sources of variability in neural data. As the connection

strength increases towards the critical edge of stability, the spectrum exhibits a power-law tail

of large eigenvalues, with exponent −5/3 in pdf (or −3/2 in eigenvalue vs. rank plot). This

power-law shape near the critical g provides concise theoretical characterizations of the spectra

under various connectivities. Intriguingly, the same power law persists even when the shape of

the spectrum is modified by connectivity motifs or due to finite temporal and spatial sample

size. In contrast, when we move away from the asymmetric, random connectivity model, the

exponent of the power law (if any) becomes different: −7/4 for symmetric random connectivity

(Eq (16)), −2 for a normal connectivity Jn with matching eigenvalue distribution as i.i.d. Gauss-

ian J (Section E.3 in S1 Text), and −d/4 − 1 for a d-dimensional ring network (see below).

Based on these results, we conjecture that a power-law tail, whenever present for any covari-

ance spectrum, reflects the qualitative nature of the connectivity and is a robust feature that

will survive both temporal and spatial sampling with the same exponent (precise statement in

Section I.3 in S1 Text).

Unlike the large eigenvalues [53], the interpretation of the bulk spectrum of PCA of neural

activity data has received little attention. A notable exception is a recent work [54] which stud-

ied the power law of covariance spectrum of data near criticality based on the renormalization

group method. By fitting experimental data to the theoretical spectrum, information from

eigenvalues of all sizes can be used to estimate the effective connection strength (Fig 8). Our

theory thus provides an important benchmark to compare with experimental data and advo-

cates the bulk covariance spectrum as a powerful global description of collective dynamics in

neuronal networks.

4.1 Nonlinear dynamics

One limitation of the work is the assumed dynamic regime where fluctuations of the neuronal

activity are described by the linear response theory [22, 23] around a fixed point. While

extending the theory to highly nonlinear activity such as chaotic dynamics [2] is left for future

research, we provide some numerical examples of networks with nonlinear neurons to illus-

trate the applicability of our results.

We consider a model with nonlinear rate neurons driven by external noise by introducing

an activation function ϕ(x) = tanh(x) in Eq (1) [2] [55]. The nonlinearity transforms the cur-

rents hi(t) to firing rates ri(t) = ϕ(hi(t)), and the recurrent interaction term is now
PN

j¼1
JijriðtÞ

(Eq (33) in Methods). When the connection strength g = Nvar(Jij) and the noise magnitude σ
are small, the neural activity will mainly fluctuate near 0 where ϕ(x) can be approximated by

linearizing around 0 (Fig 9A, bottom). Indeed, the spectrum based on the linear theory (green

dashed line in Fig 9A, top) approximates the numerical spectrum. For larger g and σ the devia-

tion from the linear theory becomes significant as the firing rates are now strongly shaped by

the nonlinearity (Fig 9B, 9C and 9D, bottom). Interestingly, these spectra can be well fitted by

the linear-theory spectrum if g is replaced by a smaller effective ĝ . This reduction in the effec-

tive g can be qualitatively understood as the average slope of ϕ(x) over the distribution of hi(t)
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(Fig 9 bottom). Note that, unlike the noiseless model in [2], the cases studied here are not cha-

otic even with g> 1. As shown in [55], the presence of external noise shifts the transition to

chaotic dynamics from g = 1 to larger values. A theoretical characterization of effective g and

other strongly nonlinear dynamics such as chaotic dynamics is left for future research. Future

work could also consider cases with transient activity which are common in nonlinear systems

and more general network architectures, such as multiple populations of EI networks [21] and

incorporating distant dependent connectivity patterns based on known cortical microcircuit

architectures [56–58].

4.2 Ordered vs. disorder connectivity

We have studied the covariance spectrum under random connectivity, which is used as a

model for complex recurrent networks. Here we ask whether features of these spectra are dis-

tinct results of the connectivity being random. To address this, we briefly explored the covari-

ance spectra from several widely used examples of ordered connectivity for comparison.

First, consider a ring network [56] with translation invariant long-range connections,

where the connection strength between neurons depends smoothly on their distance (Fig 10A

inset, see Methods). In the large-network limit, the covariance spectrum becomes a delta distri-

bution at 1 with a few discretely located large eigenvalues (Fig 10A). Next, we consider the ring

network with short-range, in particular, Nearest-Neighbor (NN) connections. The covariance

spectrum is now continuous (no outliers) and supported on an interval, but the pdf diverges at

both edges as ðDxÞ�
1
2 (Fig 10B).

To seek further examples of ordered connectivity leading to a qualitatively similar covari-

ance spectrum as the random connectivity, we consider the d-dimensional generalization of

the NN ring (Methods). As dimension d increases, the smoothness of the pdf within and at the

edges of the support increases, and the covariance spectrum becomes qualitatively similar to

the random case [59] (Fig 10). Interestingly, as the connection strength approaches its critical

value for stability, the covariance spectra also exhibit a power-law tail pCðxÞ / x� d
4
� 1 (Section

Fig 9. Covariance spectrum in nonlinear dynamics. A. Top: A histogram of covariance eigenvalues calculated from firing rate activities ri(t) of

simulating a N = 400 network model according to Eq 33. The eigenvalues are normalized to have a mean equal to 1 for easy comparison of the shape (or

equivalently the eigenvalues of the correlation matrix Section 3.8). Here g = 0.4 and σ = 0.5 (see Methods for additional numerical details). The green

dashed line is the time-sampled theoretical spectrum (Section 3.7) using actual g and α, only shown in A for clarity of the plots. The length of the

simulated data corresponds to α = N/T = 0.1. The orange curve is also the time-sampled theoretical spectrum except for using an effective ĝ that is fitted

numerically to best match the simulated eigenvalues. Bottom: The blue curve is the histogram of hi(t) (aggregated across i and t) and the orange dashed

curve is the histogram of ri(t). The overlaying red curve shows the nonlinearity ϕ(x) as a reference. The h�i in the title of each plot represents averaging

ϕ0(hi(t)) over all i and t. B-D. Same as A except for σ = 1 and g = 0.6, 0.8, 1.2, respectively. Only the fitted theoretical spectrum (orange curve) is shown

for clarity.

https://doi.org/10.1371/journal.pcbi.1010327.g009
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L.3.1 in S1 Text; x� d
2
� 1 is also possible under other cases using [60]). To match the exponent of

the random network d would be 8/3� 2.67. These comparisons suggest that the covariance

spectrum’s overall smooth density and long tail shape is a shared property in highly connected

networks with high rank connectivity matrices, including random networks and high dimen-

sional short-range spatially invariant networks.

5 Methods

5.1 Models of random connectivity

Here is a summary of results on various random connectivity models.

• i.i.d. Gaussian random connectivity Jij � N ð0; g2=NÞ: closed-form pdf and endpoints

(Eq (5)), including the frequency-dependent covariance spectrum (Section 3.6), and a

power-law tail approximation (Eq (7)).

• Gaussian random connectivity with reciprocal motifs/asymmetry κ = ρ(Jij, Jji) (Section 3.3):

analytic solution and endpoints (quartic root, Section E in S1 Text) and a power-law tail

approximation (Eq 17). For special case of symmetric and ant-symmetric connectivity,

closed-form pdf Eqs (14) and (15), including a frequency dependent covariance spectrum

(Section G in S1 Text).

• Erdős-Rényi and certain EI network Section 3.5: same bulk spectrum as the i.i.d. Gaussian

case.

Fig 10. Covariance spectra under some deterministic connectivity models. A. Histogram of the covariance eigenvalues of a ring network with a long-

range connection profile (inset, N = 100). Most eigenvalues are close to 1 and the rest of eigenvalues converge to discrete locations predicted by top

Fourier coefficients (crosses) of the connection profile (Eq (36)). B. Same as A. but for a ring network with Nearest-Neighbor connections: Ji−1 = 0.4,

Ji+1,i = 0.2. The solid line is theoretical spectrum in large N limit which has two diverging singularities at both support edges. The effect of such

singularities is also evident in the finite-size network at N = 400 (a single realization). C-F. Higher dimensional Nearest-Neighbor ring network

(ad = 0.6, see Methods). As the dimension increases, the singularities in the pdf become milder and less evident, and the overall shape becomes

qualitatively similar to the random connectivity case (Fig 1).

https://doi.org/10.1371/journal.pcbi.1010327.g010
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For all cases, the mean μ and the dimension D are derived in closed-form (Eqs 9, (10) and

(18).

For simplicity, we do not require Jii to be zero (i.e., no self-coupling), but allow it, for exam-

ple in the i.i.d. Gaussian model, to be distributed in the same way as other entries Jij. In the

large-network limit, since individual connections are weak (e.g., Oð1=
ffiffiffiffi
N
p
Þ), allowing this self-

coupling or setting Jii = 0 does not affect the covariance spectrum (Section A.3 in S1 Text).

5.2 Applications to alternative neuronal models and signal covariance

Although the relation between C and J (Eq (2)) is derived here in a linear rate neuron network

Eq (1), it also arises in other models of networked systems.

Linearly interacting Poisson neurons. This is also called a multivariate Hawkes model

[27]. This is a simple model for spiking neuron networks, but is versatile enough to capture for

example the temporal spiking correlations seen in other more sophisticated nonlinear spiking

neuron networks [26, 28]. A time-dependent Poisson firing rate is calculated as a filtered input

spike train sj(t) (sum of delta functions), and spikes are then drawn as a Poisson process given

yi(t),

yiðtÞ ¼ y0 þ

Z 1

0

Aðt � tÞ
X

j

Wijsjðt � tÞ

 !

dt: ð25Þ

Here we consider a homogeneous network where the baseline firing rate y0 and response

filter A(t) is the same for all neurons.

The exact long time window spike count covariance matrix of this network can be shown to

be [27]

C ¼ ðI � aWÞ� 1C0ðI � aWÞ� T; C0 ¼ diagfY1;Y2; ; . . . ;YNg; Y ¼ ðI � aWÞ� 1Y0; ð26Þ

which is valid if the time varying yi(t) does not often become negative (for example when any

negative connections Wij are small compare to y0). Here a ¼
R1

0
AðtÞdt, Y0 and Y are vectors

of baseline and perturbed (with recurrent connections) firing rates of the neurons respectively.

If we assume that the effective connection strength aW is weak so that we can approximate Y
with Y0, then (26) becomes

C ¼ y0ðI � aWÞ� 1
ðI � aWÞ� T;

the same as Eq (2) with J = aW (note that for Poisson process

varð
R tþDt
t siðuÞduÞ ¼

R tþDt
t yiðuÞdu).

Another condition that ensures a uniform Y and does not restrict connections to be weak is

a row balance condition of W sometimes assumed in EI networks [45],

XN

j¼1

Ji1 j ¼
XN

j¼1

Ji2 j: ð27Þ

This is not unreasonable to assume, for example, considering the homeostatic mechanisms

of neurons.

Integrate-and-Fire neurons. As shown in [23, 26] the linear response theory [22] can be

used to approximately describe the covariance structure of a network of generalized integrate-
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and-fire (IF) neurons

t
dVi

dt
¼ � ðVi � EL;iÞ þ cðViÞ þ Ei þ

ffiffiffiffiffiffiffiffi
s2
i ti

p
xiðtÞ þ

X

j

WijFijðtÞ � yjðtÞ: ð28Þ

Here Vi is the membrane potential and a spike is generated when Vi reaches a threshold.

yi(t) = ∑k δ(t − ti,k) is the spike train, and y0
i ðtÞ in Eq (29) is the “unperturbed” spike train in

absence of recurrent connections W. Different choices of ψ(V) realize types of IF neurons,

such as ψ(V) = ΔT exp((V − VT)/ΔT) for the exponential IF neurons. During the asynchronous

firing of neurons (no strong synchronized firing across the network), Eq (28) can be well

approximated by

DyiðtÞ ¼ AiðtÞ �
XN

j¼1

WijFijðtÞ � DyjðtÞ

 !

þ Dy0
i ðtÞ; i ¼ 1; 2; . . . ;N: ð29Þ

Here aðtÞ � bðtÞ ¼ ða � bÞðtÞ ¼
R t

0
aðsÞbðt � sÞds denotes convolution. W = {Wij} is the

matrix of recurrent connection weights. Ai(t) is the linear response kernel for neuron i (e.g., an

exponential decay) Fij(t) is the temporal kernel of the synapse. For simplicity, we assume that

both A and F are uniform across the network.

It it shown [23, 26] that the long time window spike count covariance matrix C (in fact also

the frequency covariance Eq (19)) is well approximated by

C ¼ a2hðDy0
i ðtÞÞ

2
iðI � aWÞ� 1

ðI � aWÞ� T:

Here the scalar a ¼ ð
R1

0
AðtÞdtÞð

R1
0
FðtÞdtÞ summarizes the cellular and synaptic dynam-

ics. hðDy0
i ðtÞÞ

2
i can be thought of as the baseline neuronal variance in the absence of recurrent

connections (A = 0 in Eq (29). This expression of the covariance matrix again matches with

Eq 2.

Fixed points over whitened input. The covariance we considered so far describes the

structure of fluctuations of spontaneous dynamics without or under fixed external input, often

referred as the noise covariance [61]. We can also consider the spectrum for a signal covariance.
This perspective is needed to use our results to interpret experimental data where the neural

activity is largely driven by stimuli for example [10].

Consider a network of linear firing rate neurons,

t
dri
dt
¼ � ri þ

XN

j¼1

Jijrj þ ui; i ¼ 1; 2; . . . ;N: ð30Þ

Here ui is the external input to neuron i. Assume the network settles to a steady state, so the

fixed point firing rates are given by

~r ¼ ðI � JÞ� 1
~u: ð31Þ

Now consider the network activity across an ensemble of input patterns, which has whit-

ened statistics [62],

varðuiÞ ¼ s
2; covðui; ujÞ ¼ 0: ð32Þ

It is easy to see that the covariance of firing rates~r is given by σ2(I − J)−1(I − J)−T, which is

the same as Eq (2).
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We note that Eq (31) or equivalently~r ¼ J~r þ~u appears in broader contexts beyond neuro-

science and is studied in the field of linear structural equation modeling (SEM) [29].

Nonlinear rate neurons. The following is a simple and classic nonlinear rate neuron

model similar to that used in [2],

t _hiðtÞ ¼ � hiðtÞ þ
XN

j¼1

Jij�ðhjðtÞÞ þ xiðtÞ; i ¼ 1; . . . ;N: ð33Þ

Here ϕ(x) = tanh(x) converts currents hi(t) into firing rates ri(t) = ϕ(hi(t)). The white noise

ξi and i.i.d. Gaussian random J are the same as in Eqs (1) and (3). The presence of noise allows

for nontrivial activity for g< 1. Due to symmetry of ϕ(x) and J distribution, the average activity

over time hhi(t)i = 0 for large N. Note that the largest slope of ϕ(x) is 1 at x = 0, our main

model Eq (1) can be viewed as a linear approximation to Eq (33) and the definition of connec-

tion strength g is consistent.

In Fig 9, N = 400, τ = 1 and Eq (33) is simulated using the Euler-Maruyama method with a

time step of 0.01 for a duration of T0 = 40000. To get the long time window covariance, the fir-

ing rates ri(t) are binned by a time window of 10, which is sufficient based on examining the

decay of its autocorrelation function. After binning, the simulated data correspond to a time-

sample parameter α = N/T = 0.1 (3.7) and this α is used in calculating the theoretical spectra.

The empirical covariance matrix is then calculated from the binned firing rates according to

Eq (37). As shown in Fig 9, the theoretical spectrum based on the linear dynamics can still be

used to fit the simulated spectrum in this nonlinear network when g is replaced by a smaller

effective ĝ .

5.3 Power-law approximation of the eigenvalue distribution

The power-law property of pC(x) for i.i.d. Jij under critical g is probably known in random

matrix theory (private communication), by results from the equivalent distribution studied in

[30], although we do not know of a specific reference. We include a derivation based on the

explicit expression of pC(x) (Eq (5)) that is outlined below.

First note the limits of the support edges. As g! 1−, ð1 � g2Þ
3xþ ! 27

4
. For the lower edge,

x� ! 27

4
can be found by the Taylor expansion of (1 − g2) or note that (1 − g2)3x+x− = 1. Con-

sider a x that is far away from the support edges as g! 1, given the above, this means,

x!1; xð1 � g2Þ
3
! 0: ð34Þ

Note that since x+/x−* (1 − g2)−3, there is plenty range of x to satisfy the above for strong

connections when g is close to 1. Under these limits, Eq (5) greatly simplifies as various terms

vanish leading to

lim
g!1� ; x� �x�xþ

pCðxÞ=
ffiffiffi
3
p

2p
x
�

5

3

0

@

1

A! 1:

This explains the validity of the power-law approximation away from support edges. If we

are only interested in the leading-order power-law tail in the critical distribution (i.e., g! 1−

and then x!1), then there is a simpler alternative derivation that can we also apply to other

connectivity models (see Section A.2 in S1 Text).
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5.4 Comparison with the Marchenko–Pastur distribution

The Marchenko–Pastur distribution is widely used for modeling covariance eigenvalues aris-

ing from noise [32, 51, 63]. It is also the limit of the time-sampled spectrum pg,α(x) (Fig 7 and

Section 3.7) at weak connections g = 0. The Marchenko–Pastur law has one shape parameter

α. We focus on the case when the covariance is positive definite which restricts 0< α< 1 (oth-

erwise there is a delta distribution at 0) and the pdf is

pMPðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ � xÞðx � a� Þ

p

2pax
; a� ¼ ð1�

ffiffiffi
a
p
Þ

2
; ð35Þ

The first two moments are 1 and 1 + α, from which we know the dimension is 1/(1 + α) has

a lower limit 1/2. The upper edge α+ is bounded by 4.

5.5 Deterministic connectivity

5.5.1 Ring network with short- and long-range connections. In a ring network, neurons

are equally spaced on a circle (can be physical or functional space) and neuron i is associated

with a location xi = i/N, i = 0, . . ., N − 1. The connection between two neurons j and i only

depends on the location difference xi − xj is therefore translation invariant.

For long-range connections, the connectivity has a shape determined by a fixed smooth

periodic function f(x) on [0, 1),

Jij ¼
1

N
f ðxi � xjÞ ¼

1

N
f

i � j
N

� �

: ð36Þ

In the large-network limit, the covariance eigenvalues have an approximate delta distribu-

tion at 1 except for a finite number of discretely located larger eigenvalues (Fig 10A). A precise

statement of this result is described in Section L.1 in S1 Text. The outlying eigenvalues corre-

spond to the leading Fourier coefficients of f(x).

For the Nearest-Neighbor (NN) connectivity, only Ji−1,i and Ji+1,i are non-zero and remain

fixed as N!1.

5.5.2 Multi-dimensional ring network. For a d-dimensional ring, the neurons are equally

spaced on a d-dimensional lattice

x~i ¼ ði1=N; i2=N; . . . ; id=NÞ;

which is periodic along each coordinate. We focus on the NN connectivity where each neuron

is connected to 2d neighboring neurons with strength Jkik � 1;ik
and Jkikþ1;ik

along direction k. We

show that the probability density function at both support edges scales as ðDxÞ
d
2
� 1

(for compari-

son, the random network edges scale as ðDxÞ
1
2). This means for dimension d� 2, there is no

singularity at the support edges (Fig 10).

To characterize the shape of the covariance spectrum (Fig 10), we further simplify by setting

Jkik � 1;ik
¼ Jkikþ1;ik

¼ a (see also Section L.3 in S1 Text for motivations based on 1D ring) and ana-

lytically derived pC(x) (Section L.3.2 in S1 Text). For small dimensions d� 3, there are distinct

“inflection points” within the support. As d increases, this non-smooth feature becomes less

evident and becomes hard to identify in empirical eigenvalue distributions from a finite-size

network (not shown).
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5.6 Fitting the theoretical spectrum to data

For neural activity data, C can be calculated from a large number of time samples of binned

spike count si(t) (assuming bin size is ΔT large),

Cij ¼
1

DT
1

M � 1

XM

t¼1

ðsiðtÞ � �siÞðsjðtÞ � �sjÞ; �si ¼
1

M

XM

t¼1

siðtÞ: ð37Þ

For calcium imaging data, the fluorescence is approximately integrating the spikes over the

indicator time constant. So we can still apply Eq (37) by plugging in the fluorescence signal in

place of si(t) to calculate the covariance C (omit the constant factor ΔT which does not affect

fitting to the theory, Section 3.8).

We fit the theoretical spectrum to empirical eigenvalues by finding the connectivity

parameter g that minimizes the error between the cumulative distribution functions (cdf)

FðxÞ ¼
R x
� 1

pðxÞdx. This avoids issues such as binning when estimating the probability density

function from empirical eigenvalues. We numerically integrate the theoretical pdf (Eq 5) to get

its cdf. As seen below, the theoretical cdf only needs to be calculated at the empirical

eigenvalues.

Motivated by methods of hypothesis testing on distributions, we measure the L2 norm cdf

error using the Cramer-von Mises statistic

D2
CvM ¼

Z

ðFðxÞ � FnðxÞÞ
2dFnðxÞ ¼

1

12n2
þ

1

n

Xn

i¼1

FðxiÞ �
2i � 1

2n

� �2

ð38Þ

Here n is the number of samples and xi are the i-th empirical eigenvalues. Alternatively, the

error can also be measured under L1 norm based on the Kolmogorov-Smirnov statistic

DKS ¼ sup
x
jFnðxÞ � FðxÞj: ð39Þ

where xi are samples. Our code implements both measures.

In Fig 8B–8E, we fit the time-sampled theoretical spectrum with i.i.d. Gaussian connectivity

(Section 3.7) to calcium imaging data in larval zebrafish [52]. The theoretical spectrum (once

normalized by the mean, see Section 3.8) depends on two parameters g and α, but the latter is

fixed to be N/M based on the data. Here N is the number of neurons in a cluster, and M is the

number of time frames used in calculating the sample correlation matrix (Eq (37). The calcium

fluorescence ΔF/F traces of each neuron are normalized to z-scores [52], which is consistent

with calculating the eigenvalues of the correlation matrix (Section 3.8). g is then optimized to

minimize the Cramer-von Mises error (Eq 37) between the data. The largest eigenvalue for

each cluster is often much larger than the rest and is thus removed before the fitting. For com-

parison, we fit the same data to the Marchenko–Pastur law (Section 5.4) whose shape depends

on the parameter α. Here we allow α to vary so that both models (random connectivity and

MP law) have one parameter to be optimized to fit data.

Supporting information

S1 Text. Supplementary material. Analytical derivations and additional figures.

(PDF)
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