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Feedback through graph motifs relates structure and function in complex networks
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In physics, biology, and engineering, network systems abound. How does the connectivity of a network system
combine with the behavior of its individual components to determine its collective function? We approach this
question for networks with linear time-invariant dynamics by relating internal network feedbacks to the statistical
prevalence of connectivity motifs, a set of surprisingly simple and local statistics of connectivity. This results
in a reduced order model of the network input-output dynamics in terms of motif structures. As an example,
the formulation dramatically simplifies the classic Erdős-Rényi graph, reducing the overall network behavior to
one proportional feedback wrapped around the dynamics of a single node. For general networks, higher-order
motifs systematically provide further layers and types of feedback to regulate the network response. Thus, the
local connectivity shapes temporal and spectral processing by the network as a whole, and we show how this
enables robust, yet tunable, functionality such as extending the time constant with which networks remember past
signals. The theory also extends to networks composed from heterogeneous nodes with distinct dynamics and
connectivity, and patterned input to (and readout from) subsets of nodes. These statistical descriptions provide a
powerful theoretical framework to understand the functionality of real-world network systems, as we illustrate
with examples including the mouse brain connectome.
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I. INTRODUCTION

Networked systems are ubiquitous across the physical, en-
gineering, and biological sciences, including wave guide net-
works [1], epidemic transmission [2], quantum networks [3],
percolation, and phase transitions [4]. These systems are
characterized by a large connectivity graph that determines
how the system operates as a whole [5–8]. The connectivity is
typically so complex that the structure-function relationship
is obscured. However, it is infeasible that every individual
connection in a network is masterfully planned, or even nec-
essary for functionality. Moreover, in many cases of practical
interest it is impossible or exceedingly expensive to even
completely measure the entire connectivity of a network. On
the other hand, sampling a network via repeated, partial ob-
servations is often possible, and this has revealed an intriguing
over-representation of certain types of localized connectivity
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patterns, or network motifs [9–11]. The alternative we explore
here is that some statistical features of connectivity drive the
underlying network function, motivating significant interest
in studying specific connectivity patterns, or network motifs,
that occur at higher than chance rates [9,10]. The key insights
from our theory are as follows: (i) the global response of large
complex networks to dynamic stimuli can be predicted based
on the statistics of local connectivity motifs, (ii) motifs of
different sizes affect the network transfer function via distinct
temporal filters [Theorem 1 and Fig. 4(b)], and (iii) the effects
from different motifs are combined nonlinearly but systemat-
ically to shape the overall network response (Theorem 4).

This work draws connections between two disciplines:
(i) the statistical theory of networks [9,12,13] to isolate the
impact of network motifs and (ii) control theory [14] to
describe the network response via an equivalent feedback
circuit. There has been significant interest and effort design-
ing robust distributed control of networked systems [15–17],
including multiagent control for the internet [18,19] and the
electric grid [20]. However, there is relatively little work that
relates network structure to function in the context of internal
feedback and control theory [21]. Our result fills that gap,
and shows how network responses can be designed by tuning
specific connection statistics.

To develop a concrete theory, we focus on the input-output
properties of networks containing linear time-invariant (LTI)
nodes. Such LTI networks are rooted in an extensive literature
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FIG. 1. A input signal u(t ) is sent to the network according to
weights Bi , and a readout is formed by summing node activities with
weights Cj .

in control theory [22], with a broad range of applications
including consensus and cooperation in networked multiagent
systems [23,24], fault detection and isolation [25], input local-
ization [26], optimal control [27], and neuronal and regional
circuits in the brain [28–30]. Further, such linear models have
been used to describe nonlinear systems around a steady state
or periodic orbit [14,26,27,31]. A similar set of equations
as Eq. (1), and the same theory we develop here, can also
be applied to describe a very widely used set of linearly
interacting point process models (the Hawkes process [32,33])
(see Appendix A). These models have, in turn, been used to
describe nonlinear systems with pulsatile interactions such as
spiking neural networks [34–36].

As illustrated in Fig. 1, we consider a network system
consisting of N nodes which are recurrently connected via
a directed connectivity matrix W , whose entries can be real
valued to represent graded connection weights. A scalar-
valued, time-dependent input signal u(t ) is fed to the network
according to a weight vector B. That is, each node i receives
an external input of Biu(t ). We gather an output y(t ) by a lin-
ear combination of unit outputs xi (t ) according to the vector
C, so that y(t ) = ∑

i Cixi (t ). The signal processing function
of the network can then be characterized as the relationship
between the input u(t ) and output y(t ). The dynamics of each
LTI node is completely described by a temporal filter h(t ) and
can be written as

xi (t ) =
∫ ∞

0
h(τ )

⎛
⎝ N∑

j=1

Wijxj (t − τ ) + Biu(t − τ )dτ

⎞
⎠.

(1)

As a result of its having LTI nodes, it is easy to verify that
the network as a whole is also a LTI system. In fact, we can
derive explicitly the filter that the entire network applies to its
inputs, hereafter denoted by G(t ). This is accomplished via
the Laplace transform L(f )(s) = ∫ ∞

0 e−stf (t )dt of Eq. (1),
which allows us to rewrite the convolution conveniently as
multiplication. Collecting outputs of nodes together as a
vector x(t ) = (x1(t ), . . . , xN (t ))T, we have the following
equation in matrix form:

x(s) = h(s)[Wx(s) + Bu(s)]. (2)

Here, we overload the notation of h(·) with both the temporal
filter h(t ) and the Laplace transform h(s), and similarly
for other variables and throughout the paper. The Laplace
transform of a temporal filter offers an equivalent description
of the LTI system in the frequency domain. Solving the system

of Eq. (2) gives the network transfer function

G(s) := y(s)

u(s)
= CT[I − h(s)W ]−1Bh(s). (3)

Here, I is the identity matrix. Unless stated otherwise, we
will consider the uniform input and output weights B = C =
(1, . . . , 1)T /

√
N .

II. NETWORK TRANSFER FUNCTION DETERMINED
BY MOTIF CUMULANTS

We now show how the connectivity W determines the
network transfer function G(s). From Eq. (3), it appears that
all aspects of W , such as each entry or eigenvalue, may affect
G(s). However, we show that only a small, highly simplified
set of statistical features of W determine the network transfer
function G(s). These features are chain motifs, quantified
via motif cumulants, a key tool introduced in [13,37] to cap-
ture higher-order connectivity structures in complex networks
[Fig. 2(a)]. Motif cumulants, previously used to efficiently
predict global levels of network synchrony from local con-
nectivity structures [13,37], quantify the frequency of “pure”
motif structures of a given size, over and above the frequency
expected from smaller motifs that form its building blocks. A
positive motif cumulant indicates an over representation of a
certain motif, whereas a negative motif cumulant indicates an
under representation.

Motif cumulants are closely related to simpler network
statistics, the motif moments, which are defined by counting
the number of occurrences of a motif in the network, and
normalized by the number that would be in a complete (i.e.,
completely connected) graph. For example, the motif mo-
ment for length n chains (n consecutive connections among
nodes i1 → i2 → · · · → in) is μn = ∑

i,j (Wn)ij /Nn+1. Fol-
lowing [37], the motif cumulant of W for length n chains κn

can be (recursively) defined via the combinatorial decomposi-
tion relation

μn =
∑

{n1,...,nt }∈C(n)

(
t∏

i=1

κni

)
. (4)

Here, C(n) is the set of all compositions (ordered partitions) of
n. An example of such a decomposition is shown in Fig. 2(b).

Importantly, motif cumulants of order n, containing n con-
nections, can be estimated from sampling of the connectivity
among up to n + 1 nodes in the network (Appendix G); thus,

FIG. 2. (a) Examples of connectivity motifs; as we will show
(for the basic case of Theorem 1), the network transfer function
G(s ) is determined by the prevalence of chain motifs, given by the
motif cumulants κn. (b) By decomposing motifs into smaller ones
(shaded submotifs), the motif cumulants (κ3 in this example) isolate
the “pure” higher-order connectivity structure from raw motif counts
(μ3 here).
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they are local features of network connectivity, which can be
key to quantifying them experimentally [10,11].

Aside from the combinatorial definition, motif cumulants
can also be calculated using a matrix expression [37]

κn = 1

Nn
eTW (�W )n−1e, where � = I − eeT. (5)

We are now ready to explain our main result that describes
the relation between connectivity and the network transfer
function G(s) via the following theorem.

Theorem 1. A network transfer function G(s) described by
Eq. (3) with uniform input and output weights, that is, B =
C = (1, . . . , 1)T /

√
N can be written as

G(s) =
(

1 −
∞∑

n=1

Nnκnh
n(s)

)−1

h(s), (6)

provided the connection strength is sufficiently small so
that the series above converges (the condition for this be-
ing |h(s)|ρ(�W�) < 1, � = I − eeT, ρ(·) is the spectral
radius). Here, κn are chain motif cumulants defined in Eq. (4).

We emphasize that Eq. (6) is an exact expression that
applies to any network connectivity W (as long as the spectral
radius constraint is satisfied), be this empirically measured
or theoretically defined, and does not require any assump-
tion of W being sampled from certain ensembles of graphs.
Moreover, Theorem 1 and the definition of motif cumulants
[Eq. (4)] also apply to networks with nonuniform connection
weights that vary from one link to another. The motif cumu-
lants are therefore interpreted as statistics for motifs, where
each “count” of occurrence is weighted by the product of the
strength of connections it contains.

The proof of Theorem 1 is based on the combinatorial
properties of κn [Eq. (4)], similar to the approach used in [37].

Proof of Theorem 1. Starting from Eq. (3) with B =
C = e = (1, . . . , 1)T /

√
N , we expand the matrix inverse as

a power series

G(s) = h

∞∑
n=0

eTWnehn = h

∞∑
n=0

Nnhnμn.

Substituting for μn with the decomposition (4) gives

G(s) = h

∞∑
n=0

Nnhn
∑

{n1,...,nt }∈C(n)

(
t∏

i=1

κni

)

= h + h

∞∑
n=1

∑
{n1,...,nt }∈C(n)

(
t∏

i=1

(Nh)ni κni

)
.

The summation above
∑∞

n=1

∑
{n1,...,nt }∈C(n) goes over all or-

dered partitions for each positive integer n (exactly once).
We now enumerate these ordered partitions in a different
order: first, consider the number of components t in the
partition; next, note that each of these t components can take
any positive integer value ni (i = 1, . . . , t). Note further that
each specified t and {ni} correspond to exactly one ordered
partition in the original summation; and all ordered partitions
will be enumerated for some t and {ni}. This shows that we

can rewrite the summation in the following order:

G(s) = h + h

∞∑
t=1

∞∑
n1,...,nt=1

(
t∏

i=1

(Nh)ni κni

)
.

Note that the sum over n1, . . . , nt and the product summand
can be factorized, which yields an identical factor for every
ni :

G(s) = h + h

∞∑
t=1

t∏
i=1

( ∞∑
ni=1

(Nh)ni κni

)

= h + h

∞∑
t=1

( ∞∑
n=1

(Nh)nκn

)t

.

Finally, summing the geometric series yields Eq. (6):

G(s) = h + h

∑∞
n=1(Nh)nκn

1 − ∑∞
n=1(Nh)nκn

= h

1 − ∑∞
n=1(Nh)nκn

. �

Theorem 1 provides a major simplification of the rela-
tionship between connectivity W and the network transfer
function. First, only chain motifs appear in Eq. (6). This shows
they are the only independent connectivity features that affect
G(s). Other types of motifs and connectivity features may
indirectly modify G(s), but their effect is fully quantified in
terms of their impact on chain motif cumulants.

Moreover, as we will illustrate below, the representation
is highly efficient. Keeping only the first few terms of the
infinite sum in Eq. (6) can provide a good approximation
of G(s). This is in contrast to the slow convergence of a
naive expansion of G(s) in powers of h(s), which would
have coefficients related to motif counts μn instead of motif
cumulants κn. Intuitively, the κn decay rapidly with size n, as
they have had any redundancy from their subcomponents re-
moved. We empirically observe this fast decay in many graph
models [37]. This has important practical consequences, as the
global network dynamics can then be explained in terms of a
few measurable connection statistics.

III. NETWORKS REDUCED TO FIRST ORDER “MOTIF”
AND PROPORTIONAL FEEDBACK

To gain intuition for the formula in Theorem 1 and illus-
trate the powerful simplifications it provides, we first consider
special, yet widely used, types of networks that can be reduced
to only the “trivial” motif of first order chain cumulant κ1 in
the relation to the network transfer function. For such net-
works, the formula in Theorem 1 greatly simplifies, yielding
a network transfer function G(s) that is precisely equivalent
to proportional feedback on a single node. This equivalent
feedback diagram is shown in Fig. 3.

A. Small world, “rotationally invariant,” and other networks
with uniform in- or out-degrees

Networks with uniform in-degrees (that is, with the
weighted sum of all incoming connections being the same
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FIG. 3. The network transfer function for uniform degree net-
works and Erdős-Rényi networks are equivalent to proportional
feedback around a single node.

for each node) or with uniform out-degrees are frequently
described in neuroscience, physics, and in network science
overall. Such networks include regular networks [16] and
rewired regular networks. Importantly, the latter is a popular
model for small world networks, which have uniform out-
degrees [5].

Another way that networks with uniform degrees arise is
through rotationally invariant connectivity structures. Rota-
tionally invariant networks are characterized by defining a
circular space variable x and having the connectivity between
two nodes depend on their spatial distance. These occur in
common models of, for example, neural networks that encode
circular variables like direction of movement [38]. Let us
consider a network with rotationally invariant connection
strengths Wij = w(j − i) and periodic boundary conditions
w(i) = w(i + N ). The average connection weight is w̄ =
1/N

∑N
k=1 w(k).

Next, we show that networks with uniform in- or out-
degrees have an interesting property: their chain motif cu-
mulants κn = 0 for all n � 2. As a consequence, all of these
networks produce input-output filters that are equivalent to
proportional feedback on a single node (Fig. 3 above). In-
tuition behind such a dramatic simplification comes from a
combination of two facts. First, the dynamics of the nodes in
the network is linear and thus the effect of potentially com-
plex connectivity structures and pathways may be combined.
Second, the fact that we send input to and read output from the
network uniformly matches the network’s property of having
uniform degrees. This allows the effect of connectivity be
captured by its average, which is essentially the first term in
Eq. (6) corresponding to the proportional feedback.

Theorem 2. For networks with uniform in- or out-degree,
that is,

N∑
j=1

Wij ≡ din or
N∑

i=1

Wij ≡ dout,

all higher-order chain motif cumulants are 0, that is, κn�2 = 0.

Proof. Let us first consider a network with rotationally
invariant connection strengths Wij = w(j − i) and periodic
boundary conditions w(i) = w(i + N ). The average connec-
tion weight is w̄ = 1/N

∑N
k=1 w(k). The second order chain

moment is

μ2 = 1/N3
N∑

i=1

N∑
j=1

N∑
k=1

WijWjk

= 1/N3
N∑

i=1

N∑
j=1

N∑
k=1

w(j − i)w(k − j )

= 1/N3
N∑

i=1

N∑
j=1

w(j − i)
N−j∑

k=1−j

w(k)

= w̄/N2
N∑

i=1

N−i∑
j=1−i

w(j )

= w̄2.

Thus, a rotationally invariant network has the same second
order chain motif moment as a uniform network with Wij ≡
w̄ ∀ i, j .

The nth order (n � 2) chain moment is

μn = 1/Nn+1
N∑

i1,in

(Wn)i1,in

= 1/Nn

N∑
i1,in−1,in

(Wn−1)i1,in−1Win−1,in (7)

= 1/Nn

N∑
i1,in−1

(Wn−1)i1,in−1

N∑
in

Win−1,in

= 1/Nn

N∑
i1,in−1

(Wn−1)i1,in−1w̄

= μn−1w̄.

Here, we rewrite the chain motif μn in terms of a lower
order motif w̄μn−1. Repeating this calculation, we conclude
that μn = w̄n. Using the decomposition relation between μn

and κn, we can show by induction that this indicates κn�2 = 0.
Assume that κ2�m�n−1 = 0. All ordered partitions in Eq. (4)
correspond to 0 except for when all ni , i = 1, . . . , nt , are
either 1 or n. This narrows down to two ordered partitions
and (note that κ1 = w̄)

(w̄)n = μn =
n∏

i=1

κ1 + κn = (w̄)n + κn.

This shows that κn = 0. By induction, we conclude all κn�2 =
0 in rotationally invariant networks.

The essential part of the proof was (7), in which the sum
corresponding to the end of the chain was factored out and
summed, yielding the same value Nw̄ for each in−1. This
reduces the length of the chain by 1. In general, this step is
possible as long as all the nodes in the network have the same
(weighted) in-degree; this is the case of uniform in-degree.

Note that we can perform a similar reduction at the begin-
ning of the product in (7) instead of at the end, via

1/Nn+1
N∑

i1,in

(Wn)i1,in = 1/Nn

N∑
i1,i2,in

Wi1,i2 (Wn−1)i2,in .

Therefore, the same conclusion will follow if the network has
uniform out-degree instead. �

B. Erdős-Rényi graphs

Erdős-Rényi (ER) random graphs [39] are widely used
in models of networked systems, where each connection is
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independently chosen to be present with probability p. In-
terestingly, we show that for large Erdős-Rényi graphs, all
nontrivial motif cumulants vanish, just as for the uniform
degree networks described in Sec, III A.

Theorem 3. For an Erdős-Rényi graph with a fixed con-
nection probability p, we have κ1 → p and κn�2 → 0 in
probability as N → ∞.

Proof. By definition, κ1 = 1
N2

∑
i,j Wij . As the Wij are

independent and identically distributed (i.i.d.) variables, κ1 →
E[Wij ] = p in probability as N → ∞ by the law of large
numbers.

For n � 2, using the matrix expression of motif cumulants
(5),

|κn| =
∣∣∣∣ 1

Nn
eT(W�)n−1We

∣∣∣∣
� 1

Nn
‖eT‖2(‖W�‖2)n−1‖W‖2‖e‖2

=
(‖W�‖2

N

)n−1 ‖W‖2

N

�
(‖W�‖2

N

)n−1 ‖W‖F

N
. (8)

Here, e = (1, · · · , 1)T/
√

N , and ‖W‖F =
√∑

i,j W 2
ij is the

Frobenius norm.
First, we show a bound on the second factor ‖W‖F /N in

(8). By the law of large numbers, for any positive δ,

1

N2

∑
i,j

W 2
ij � E

[
W 2

ij

] + δ = p + δ (9)

is satisfied with probability approaching 1 as N → ∞; here,
we used that W 2

ij = Wij since entries of the connection matrix
are 0 or 1. Choosing a fixed value of δ such as δ = p, we have

‖W‖F �
√

2pN,

with probability approaching 1 as N → 1.
To finish the proof, we will use the following result to

bound the first factor in (8). The proof of the lemma is given
in Appendix B.

Lemma 1. For some absolute constant C, the probability
that the following inequality holds approaches 1, as N → ∞:

‖W�‖2 � C
√

N. (10)

Using Eqs. (9) and (10) (along with a choice of the constant
δ), we see that the inequality

|κn| � C

(
1√
N

)n−1

holds with probability approaching 1, as N → ∞, and for
some positive constant C (independent of n and N ). Finally, as
C( 1√

N
)
n−1 → 0 as N → ∞, the above indicates that κn�2 →

0 in probability. �
We have seen that for networks with κ1 as the only nonzero

chain motif cumulant, the network transfer function can be
represented as a proportional feedback. It turns out the “re-
verse” is also true: adding global feedback to an arbitrary

network changes the network transfer function in the same
way as adjusting its first motif cumulant.

Consider adding a global feedback by sending a proportion
of the network output w0y(t ) back to combine with its input
u(t ). One can directly verify that the new network transfer
function for a network with such additional feedback is

Gnew(s) = h(s)

1 − N
(
κ1 + w0

N

)
h(s) − ∑∞

n=2 Nnκnhn(s)
.

This shows that the effect of such a global term, at the level
of motif cumulants, is simply to shift κ1 while keeping all
κn�2 the same. At the connectivity matrix level, the above
modification in {κn} corresponds to adding w0/N to all entries
of W .

Furthermore, one can show that this equivalence holds not
only in the sense of producing the same network transfer G(s),
but also in terms of the stability condition of the network,
as explained in Appendix C). We will use these facts in
Sec. VIII A to emphasize effects from higher order κn by
reducing κ1.

IV. NETWORKS WITH IMPACT FROM
HIGHER-ORDER MOTIFS κn�2

For complex networks where there are motif structures
beyond first order (κ1), the equivalence of connectivity to
feedback loops in Fig. 3 can be generalized: each motif cumu-
lant gives rise to a unique feedback pathway, which combines
to yield the ladder-structured control diagram shown in Fig. 4.
We emphasize that our usage of motif cumulants is essential:
by removing redundancy due to shorter component paths,
each motif cumulant corresponds to a unique feedback link,
instead of appearing at multiple links.

The functional diagrammatic representation in Fig. 4 sug-
gests that motif cumulants can be thought of as feedback
knobs, which shape the input-output properties of a network.
In general, the impact of any motif cumulant depends on the

FIG. 4. (a) Complex networks may be organized by their motif
cumulants κj ; the first two cumulants are shown. We show two
example networks with different motifs. Bar graphs show values of
κ1 through κ4 (relative magnitude to powers of the connection proba-
bility, see details in Appendix F), for each network. (b) The motif
content determines the strength of each pathway in the feedback
hierarchy shown; this relationship is indicated by the green “slider”
arrows.

062312-5



HU, BRUNTON, CAIN, MIHALAS, KUTZ, AND SHEA-BROWN PHYSICAL REVIEW E 98, 062312 (2018)

Frequency (rad/sec)Frequency (rad/sec)

h(t)
=

(1)
(2)
(3)

(4)
(5)
(6)

FIG. 5. Network transfer functions G(s ) for different networks,
indicated by matching color/shade and numbering as the dots in
Fig. 4 (see legends on top of each column); in the first column,
networks have differing values of κ1; in the second, differing values
of κ2. Here, the node filter is hexp. Dashed lines are approximations
by keeping leading terms (1 term in the left column and 3 terms
for the right, see text); some are indistinguishable from the solid
corresponding to actual filters with all terms.

presence or absence of others in a given network. Moreover,
motifs of different sizes affect the network transfer function
in different ways. This is because the feedback link for κn

involves passing through n copies of the node filter [the hn(s)
factors in Eq. (6)].

To demonstrate this, we generate “binary” networks where
all nonzero connections have the same strength a, and their
motif statistics lie in different locations on the plane of κ1 and
κ2 [Fig. 4(a), the networks are generated as ER networks or
second order networks (SONETS [40]), see Appendix I for
more details]. We fix all other parameters such as the coupling
strength a so that the only difference is the graphical structure
of W . For concreteness, we set the node filter h(t ) to be
either an exponential filter hexp(t ) = e−t/5, t � 0 (Fig. 5), or a
decaying-oscillatory filter hcos(t ) (Fig. 6)

Figures 5 and 6 show the change in the network transfer
function for various κ1 and κ2 in both frequency and time
domains. In the frequency domain, we use the standard Bode
diagrams which plot the magnitude and phase of G(s) along
frequencies s = iω [22] (first two rows in Figs. 5 and 6);
In the time domain, we plot the impulse response, that is
the network’s output given a brief impulse, which is also the
inverse Laplace transform of G(s), G(t ) = 1

2πi

∫ +i∞
−i∞ G(s)ds

(bottom row in Figs. 5 and 6). Increasing κ1 while κn�2 ≈ 0,
or equivalently increasing the connection probability in a ER
graph, we observe a change in the network transfer function
G(s) from a low-pass filter towards an integrator [i.e., G(s) =
1/s] in the case of h(t ) = hexp(t ), and an increase of the
magnitude of resonant peak in the case of h(t ) = hcos(t ). In

Frequency (rad/sec) Frequency (rad/sec)

h(t)
=

(1)
(2)
(3)

(4)
(5)
(6)

FIG. 6. Same as Fig. 5 except that the node filter is hcos.

the time domain, the impulse response correspondingly has a
slower decay, in the case of hexp(t ), indicating an increased
“memory” to past inputs (a point we will return to), and
enhanced oscillations in the case of hcos(t ).

Next, we change the connectivity W along the κ2 di-
rection, while fixing κ1. This is equivalent to changing the
frequency of two-link chain motifs, while keeping the number
of connections the same. Figures 5 and 6 show that this
structural change achieves similar input-output dynamics as
adding more connections to a ER graph. Moreover, including
a higher-order motif cumulant κ2 can introduce additional
effects in G(s) not present with κ1 alone. For example, an en-
hanced frequency of two-link chains (positive κ2) in networks
with hexp(t ) nodes introduces additional timescales in the
network impulse response, which is no longer described by
a single exponential (Fig. 5, third row insets on log magnitude
plots).

More dramatic effects of κ2 can be achieved for dense
weighted networks, or for sparse networks via a modified ver-
sion of the theory. We explain these networks and associated
theory in Sec. VIII.

To confirm the efficiency and accuracy of our motif cu-
mulant approach, we approximate G(s) by truncating Eq. (6)
to include only cumulants of up to size 3. Despite our using
only highly local connectivity information, the resulting G(s)
(dashed lines in Fig. 5) functions closely match the exact G(s)
from the full connectivity matrix W (solid lines).

Interestingly, many of these effects by changing motifs
may be understood analytically via the movement of poles
in the complex plane, a classic tool from control theory. The
method links the properties of a transfer function h(s) to
its poles: the complex values of s where the denominator
of h(s) becomes zero. Based on Eq. (6), the poles of G(s)
are closely related to the roots of an m-degree polynomial
having motif cumulants as coefficients P (z) = Nmκmzm +
Nm−1κm−1z

m−1 + · · · + Nκ1 − 1, if κn>m ≈ 0 and we can
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neglect the effect of those higher-order motifs. A detailed
analysis based on this (Appendix D) explains the change in the
speed of temporal decay and the amount of oscillations (see in
Figs. 5 and 6) as well as the “bifurcation” occur with negative
κ2 for those networks with stronger effects from motifs in
Sec. VIII.

V. MOTIF CUMULANTS AND THE TIME CONSTANT
OF SYSTEM RESPONSE

One intensely studied property of network systems in the
literature [28–30] is the network time constant: how long the
network maintains a “memory” of past signals once they have
been removed. We will in particular study how connectivity
statistics change the time constant in the context of mesoscale
mouse brain network in Sec. IX. We first develop a general
theory that establishes a direct and explicit form relation
between motif cumulants and the time constant.

We quantify the timescale for a general filter filter via the
“frequency-cutoff” time constant. Specifically, in the Bode
magnitude plot (which is in logarithm scale for both coordi-
nates, e.g., Fig. 5), we draw a horizontal line at the level of
“baseline” gain (i.e., the magnitude at 0 frequency), and an-
other asymptotic line following the decay at high frequencies;
the x coordinate of the intersection is the cutoff frequency
s0 [or its logarithm log10(s0)]. Intuitively, this is where the
transition between a sustained response vs a strongly damped
response occurs. The time constant can in turn be defined as
the reciprocal of the cutoff frequency τ = s−1

0 .
This definition of time constant is consistent with the

notion of the speed of temporal decay. Taking the exponential
filter hexp(t ) = e−αt , t � 0, as an example, it is easy to verify
that its time constant defined by the cutoff is 1/α, the same
as the usual definition for the time constant of an exponential
decay.

The cutoff time constant for the network response G(t ) can
be precisely linked to motif cumulants using the resumming
formula (6).

Theorem 4. Consider a network with a node filter h(s) that
decreases asymptotically as 1/sg (g > 0) for large s, with
a time constant τh. Then, the time constant of the network
transfer function G(s) is

τG = [
τ

g

h

/(
1 − Nκ1τ

g

h − N2κ2τ
2g

h − · · ·)]1/g
. (11)

We note that one insight from Eq. (11) is that the contri-
butions from different motif cumulants are combined nonlin-
early to determine the network time constant. This is due to
the appearance of κn in the denominator. For example, the
effect of changing κ2 on the time constant will also depend
on the value of κ1.

Proof. First, we express the time constant of h(s) according
to the definition given above. Because h(s) ≈ 1

sg for large s,
the large frequency asymptotic line in the Bode plot of h(s)
is y = −20gx, where x = log10 s (note that the y-axis unit is
decibels, hence the coefficient 20). The low frequency asymp-
tote of h(s) is a horizontal line y = 20 log10 h(0). We can
solve for the intersection of the two asymptotes: they intersect
on the Bode plot at x = −g−1 log10 h(0), corresponding to a

cuttoff frequency s0 = (h(0))−
1
g . The time constant, which is

the reciprocal of s0, is τh = (h(0))
1
g .

FIG. 7. Comparison of numerical (x axis) and analytical pre-
dictions (y axis) of time constants in 100 SONETs (each network
sample is a dot). The motif based prediction is from truncating
after second order (a)) or third order ((b)) motif cumulants, using
Theorem 4. The axes are in log10 scale, and the values are normalized
by the time constant of a single node (which corresponds to 0). All
the networks have the same connection strength and approximately
the same number of connections (connection probability 0.1) by con-
struction, but have various extents of second order motif cumulants.
For comparison, the time constant for an Erdős-Rényi network is
labeled by a red plus sign.

Now, we apply the similar calculation of intersec-
tion to G(s). The baseline gain G(0) can be calculated
by setting s = 0 in Eq. (6) and substitute h(0) with
τ

g

h using the relation derived above. This gives G(0) =
τ

g

h /(1 − Nκ1τ
g

h − N2κ2τ
2g

h − · · ·). And for large s, G(s) ≈
1
sg . Combining these, the time constant of G(s) is

(G(0))
1
g = [

τ
g

h

/(
1 − Nκ1τ

g

h − N2κ2τ
2g

h − · · ·)]1/g
.

�
To test the utility of Theorem 4, we numerically computed

the time constant (by definition) for a large set of second
order networks (SONETs [40]) with diverse values of κ2,
while κ1 and the coupling strength of each connection are
set to be the same for all networks. When compared with the
approximations computed using Theorem 4 and only using
κ1 and κ2, with higher-order terms truncated, we see a very
good agreement [Fig. 7(a)]. The motif based approximation
can be further improved by keeping more cumulant terms
in Theorem 4 [Fig. 7(b)]. We also observe a broad range of
time constants spanning several orders of magnitude. As a
comparison, the time constant for a matching Erdős-Rényi
graph (with the same number of connections) is marked in
Fig. 7, and this would also be the prediction based on κ1 alone.
This shows motif cumulants at various orders can have large
impacts on timescale.

VI. NETWORK TRANSFER IN THE PRESENCE
OF HETEROGENEOUS, RANDOM INPUT

AND OUTPUT WEIGHTS

A. Independent, random weights and the robustness
of G(s) in large networks

Until now we have considered the case where the input
and output weights are uniform over all the nodes in the
network. Here, we consider whether the results for these
uniform weights are robust to noise in the weights. We start
by considering the case where input and output weights Bi ,
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FIG. 8. Bode diagram showing convergence of network trans-
fer functions in large networks; blue thin lines are 100 individual
networks. The red thick lines in the middle correspond to uniform
input and output weights. The shaded area shows the 90% confidence
interval [Eq. (16)].

Cj , for all i, j = 1, . . . , N , are independent and identically
distributed (i.i.d.) variables.

For an arbitrary set of weights B,C, the matrix formula
of G(s), Eq. (3), still applies. However, the expression (6), in
terms of motif cumulants, no longer holds directly. Nonethe-
less, we can verify easily that the expectation E[G(s)] is
essentially the same as the case with uniform weights and
hence Eq. (6) applies:

E[G(s)] = E[Bi]E[Cj ] · eT[I − h(s)W ]−1eh(s), (12)

where e = (1, . . . , 1)T /
√

N .
Interestingly, for large network, we prove the following

result that the random G(s) converges to its expectation (proof
given in Appendix E), so the motifs cumulant description (6)
also describes each random G(s) closely (Fig. 8).

Theorem 5. Let κn be the motif cumulants of a sequence of
W , whose size N → ∞. Assume that each κn has a limit κ∞

n

as N → ∞. Additionally, we assume a bound on the norm
of W ,

‖W‖2 � (1 − δ)
N

maxs |h(s)| , (13)

for some fixed positive constant δ. Let G(s) be the (random)
transfer function for networks with connection matrix 1

N
W ,

and random i.i.d. input/output weights B,C with mean θ =
1√
N

and variance σ 2 = σ 2
0

N
(σ0 is a constant). Then, we have the

following convergence network transfer function as N → ∞:

G(s) → G∞(s) uniformly in s, (14)

where G∞(s) = [1 − ∑∞
n=1 hn(s)κ∞

n ]−1
h(s).

In addition to the asymptotic convergence, it is also impor-
tant for applications to assess the rate of this convergence for

FIG. 9. Schematic of the distribution of G(s ) around E[G(s )]
for a fixed s and the related decomposition into independent
components.

a finite size network. To this purpose, we derive an estimate of
the confidence interval describing the fluctuations of |G(s)|.

Our calculation is based on the ansatz or assumption that
G(s) for each s is Gaussian distributed. The assumption
is intuitively justified as G(s) is a linear sum of a large
number of random variables Bi, Cj , when W and s are fixed.
This assumption also appears to holds well in our numerical
simulations.

Note that the G(s) in general are complex variables.
Therefore, G(s) will be Gaussian distributed in 2D under our
assumption (Fig. 9). As G(s) can have correlated components
which may not be aligned with E[G(s)] (see Fig. 9), calculat-
ing the exact confidence interval that G(s) lies in for a certain
probability is quite involved. Instead we derive a simple upper
bound.

First, the triangle inequality gives

|E[G(s)]| − |G(s) − E[G(s)]|
� |G(s)| � |E[G(s)]| + |G(s) − E[G(s)]|. (15)

Let Z = G(s) − E[G(s)] be the 2D random vector, which
can be decomposed into independent real Gaussian compo-
nents X, Y such that |Z|2 = X2 + Y 2. For 0 < p < 1, let
α = �−1(1 − p/2) > 0, where �−1(x) is the inverse cumu-
lative distribution function for a standard Gaussian variable.
Therefore, we have

P (|X| � ασX ) = 1 − p, P (|Y | � ασY ) = 1 − p.

Here, σ 2
X and σ 2

Y are the variances of X, Y . Since X and Y are
independent,

P (|X| � ασX, |Y | � ασY ) � (1 − p)2.

Under this event,

|Z| =
√

X2 + Y 2 � α

√
σ 2

X + σ 2
Y = ασZ.

Finally, using inequality Eq. (15), we arrive at the follow-
ing upper bound of the confidence interval for |G(s)|:

P (|E[G(s)]| − ασZ � |G(s)| � |E[G(s)]| + ασZ )

� (1 − p)2. (16)

Here, α = �−1(1 − p/2), and σ 2
Z is the variance of Z =

G(s) − E[G(s)] whose expression is explicitly given in
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FIG. 10. Feedback diagram for a network with correlated input
and output weight vectors B, C (see text). Both chain and cycle motif
cumulant give rise to a feedback link in the flow diagram. The circled
numbers are additional constant weights for some feedback links.

Eq. (E2) in Appendix E. As shown in Fig. 8, this estimate
of the confidence interval indeed agrees well with numerical
simulations.

B. Correlated, random input and output weights recruit cycle
motifs that determine network transfer

We next consider the case when the input and output
weight vectors B,C are random but correlated. Specifically,
we take Bi and Ci to be correlated for each i = 1, . . . , N

while Bi and Cj are still independent for i 
= j . Such a
correlation structure can be motivated in neuroscience, where
plasticity mechanisms may lead more-active cells to both
receive stronger inputs and more strongly influence cells
downstream.

As we describe below, the presence of correlations between
input and output weights changes the average network transfer
function E{G(s)}, but it can still be described by a similar mo-
tif cumulant expression [Eq. (21)], now involving additionally
the cycle motif cumulants. Moreover, the expression again has
a feedback diagram interpretation (Fig. 10).

We first derive the expression for E{G(s)} in the correlated
case. Let var(Bi ) = var(Ci ) = σ 2 and ρ = cov(Bi, Ci )/σ 2 be
the correlation coefficient that is same for all i = 1, . . . , N .
The following identity holds for any matrix M:

E[BT MC] =
∑
i,j

Mij E[BiCj ]

=
∑
i,j

Mij (θ2 + ρσ 2δij )

= Nθ2eT Me + ρσ 2tr(M ).

Here, tr(·) is the trace and e = (1, . . . , 1)T /
√

N . Using this
identity

E[G(s)] = Nθ2eT[I − h(s)W ]−1eh(s)

+ ρσ 2tr{[I − h(s)W ]−1}h(s). (17)

The appearance of the second term above reflects the corre-
lation between input and output weights. If θ and σ have the
same scaling with respect to N , the first term in Eq. (17) will
dominate for large N . However, if the weights are balanced
with both positive and negative values, giving a mean weight
θ = 0, E[G(s)] will contain only the second term ρσ 2tr{[I −
h(s)W ]−1}. To focus on the effect of this new term, we set
θ = 0 from now on unless stated otherwise.

Using the matrix Taylor series expansion, we can relate
the trace term to connectivity motifs, in particular the cycles.
First, we have

tr{[I − h(s)W ]−1} =
∞∑

n=0

h(s)ntr(Wn). (18)

Note that N−ntr(Wn) is the frequency with which an n-cycle
of connections occurs in a network in which the entries of W

take values in {0, 1}. A 2-cycle is simply a pair of reciprocal
connections. In general, an n-cycle is a loop identified with
indices connected as i1 → i2 → · · · → in → i1. Similar to
the chain motifs considered earlier, we may define the motif
moments for n-cycles as

μc
n = N−ntr(Wn), n � 1. (19)

By generalizing the decomposition between motif moments
and cumulants [Eq. (4)], we should expect that

μc
n =

∑
{n1,...,nt }∈C(n)

n

t

(
t∏

i=1

κni

)
+ κc

n. (20)

The formula is explained by enumerating all possible de-
compositions of an n-cycle. We do this in two steps. First,
we break the cycle at any one of the n nodes, yielding a
single chain. Next, we break the resulting chain into smaller
chain motifs, which correspond to ordered partitions as be-
fore. Since each decomposition which ends up with t � 1
components can be acquired by first breaking the cycle at
any of the t locations, it is redundantly counted t times in
the procedure above. This, together with the n locations of
the first break, explains the n/t factor in Eq. (20). Finally, the
only exception to the procedure is the cycle itself without any
breaks, which is the last term κc

n. Naturally, we recursively
define κc

n as the cumulant for cycle motifs using Eq. (20). One
can also prove that this definition has an equivalent matrix
expression κc

n = N−ntr[(�W )n], � = I − eeT.
We can now use the combinatorial properties of κn and

κc
n to obtain a resummed formula for this trace term arise in

correlated input output weights.
Theorem 6.

ρσ 2tr[(I − hW )−1]h

= ρσ 2

(
Nh +

∞∑
n=1

Nnhn+1κc
n +

∑∞
n=1 nNnhn+1κn

1 − ∑∞
n=1 Nnhnκn

)
,

(21)

provided the connection strength is sufficiently small so that
the series above converges [the condition for this being
|h(s)|ρ(�W�) < 1].

Proof. We start by expanding (I − hW )−1 into a matrix
power series and then substitute tr(Wn) in for μc

n, using the
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definition (19). Next, we use decomposition (20) to split the
terms of μc

∗ into κc
∗ (∗ stands for an arbitrary length index).

This gives

tr[(I − hW )−1] = tr(I ) +
∞∑

n=1

hntr(Wn)

= N +
∞∑

n=1

Nnhnμc
n

= N +
∞∑

n=1

Nnhnκc
n

+
∞∑

n=1

Nnhn
∑

{n1,...,nt }∈C(n)

n

t

(
t∏

i=1

κni

)
.

The essential step is to resum the last term in the above expres-
sion. We introduce a (formal) series in complex variable z:

f (z) =
∞∑

n=1

zn
∑

{n1,...,nt }∈C(n)

n

t

(
t∏

i=1

κni

)
.

The original series can be obtained by setting z = Nh once the
series is summed to a closed expression. Formally, or for z in
the radius of convergence of the series, consider the indefinite
integral of f (z)/z:∫

f (z)

z
dz =

∞∑
n=1

zn
∑

{n1,...,nt }∈C(n)

1

t

(
t∏

i=1

κni

)

=
∞∑

n=1

∑
{n1,...,nt }∈C(n)

1

t

(
t∏

i=1

zni κni

)

=
∞∑
t=1

1

t

t∏
i=1

( ∞∑
ni=1

zni κni

)

=
∞∑
t=1

1

t

( ∞∑
n=1

znκn

)t

= − log

(
1 −

∞∑
n=1

znκn

)
.

For the third “=” we have used the same trick of switching
the order of summations as in the proof of Theorem 1, by
enumerating t first. In the last equality, we treat

∑∞
n=1 znκn as

a variable and assume its magnitude is less than 1 (or operate
formally). Finally,

f (z) = −z
∂

∂z
log

(
1 −

∞∑
n=1

znκn

)
=

∑∞
n=1 nznκn

1 − ∑∞
n=1 znκn

.

The original trace term for G(s) is thus

ρσ 2tr[(I − hW )−1]h

= ρσ 2

(
Nh +

∞∑
n=1

Nnhn+1κc
n +

∑∞
n=1 nNnhn+1κn

1 − ∑∞
n=1 Nnhnκn

)
.

�
This expression Eq. (21) again corresponds to a feedback

diagram as shown in Fig. 10. Compare with the diagram
(Fig. 4) in the uniform input output case, note that the ad-
ditional feedbacks by the cycle motif cumulants κc

n, as well as
the different coefficient for the chain motif cumulant links.

FIG. 11. Numerical examples showing the impact of κc
2 on

E[G(s )] for correlated input and output weights B, C, for the node
filter hexp(s ) (left column) and decaying-oscillatory filter hcos(s )
(right column) calculated using Eq. (17). Lines of blue-to-yellow
colors (darker to lighter shades) correspond to κc

2/0.09 taking values
from −0.85 to 0.9. The entries of B and C have mean 0 and
ρσ 2 = 1/N (see text). The networks W are generated as Gaussian
random matrices with entries of variance 0.09 and size N = 400
(Appendix I 3). We scale the coupling strength of each W to 40%
of the critical maximum value.

We illustrate the potential impacts of cycle motif cumu-
lants on G(s) with the following numerical example. We
use Eq. (17) to calculate E{G(s)} while we have set θ = 0
and ρσ 2 = 1/N . We generate networks based on Gaussian
random entries with various levels of the cycle cumulant κc

2
(ranging from −0.85 σ 2

w to 0.9 σ 2
w whereas the maximum

possible range is [−σ 2
w, σ 2

w]), and their E{G(s)} are plotted in
Fig. 11 in lines of different colors. The most significant impact
of cycle motifs on the network transfer function happens with
negative κc

2 . Overall, for the exponential node filter, positive
κc

2 tends to increase the time constant; the opposite is true for
negative κc

2 .
Beyond calculating the network transfer function using the

full connectivity W via Eq. (17), the resumming formula (21)
can be used to calculate E[G(s)] based only on the value
of κc

2 (other motif cumulants are small in the generated
networks). We find that this approach is accurate for relatively
small coupling strengths, and consequently the effect of κc

2
appears to be similar but smaller in scale than that shown in
Fig. 11. For large coupling strengths, however, the spectral
radius condition required for using the motif cumulant expres-
sion [Eq. (21)] is no longer satisfied. Extending our theory
to capture such cases of strong coupling is left for future
work.

VII. NETWORKS WITH MULTIPLE POPULATIONS
AND PATTERNED INPUTS AND OUTPUTS

Above, while we allowed for randomness in the weights
Bi and Ci by which a signal is read into or out of a network,
we still assumed a single distribution for these weights; more-
over, we took the single-node dynamics and motif statistics
to be homogeneous across the network. Many networks of
interest in biology and other fields, however, are composed
of nodes of different types and connectivity rules (as for the
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FIG. 12. Schematic for a network with multiple node types or
population-wise patterned inputs and readouts; here, indicated by
blue and pink node (dark and light shades).

proliferation of cell types in neuroscience). Here, we describe
how to generalize our theory to allow for dynamics [h(s)] and
connectivity (κn) factors and input output weights (B,C) to
be node-type specific, so the whole network is composed of
multiple populations.

Consider a network consisting of k populations of nodes,
with population type indexed by α. Nodes in each population
α are assumed to have the same population specific filter
hα (s). Ordering individual nodes in blocks according to their
population index, the input-output equation for x(s) [Eq. (2)]
can be expressed in matrix form by introducing the diagonal
matrix Dh = diag(h1, . . . , h1, h2, . . . , h2, . . . , hk, . . . , hk ):

x(s) = Dh[Wx(s) + Bu(s)]. (22)

Given the differences of node types, we consider signal input
and output weights B,C that are different across populations
yet uniform within nodes of a same population (Fig. 12).

Any resulting network transfer function from these pop-
ulation specific weights is a linear combination of terms we
denote by Gαβ (s). These are the network transfer functions
achieved by uniformly feeding input the u(s) into nodes of
the population β and reading the response out from nodes in
population α. These transfer functions Gαβ (s) form a matrix;
by abuse of notation we refer to this matrix again by G(s). To
derive a formula for it, first let U be the block matrix

U = 1√
N

⎡
⎢⎢⎢⎢⎢⎣

e1 0 · · · 0

0 e2
. . .

...
...

. . .
. . . 0

0 · · · 0 ek

⎤
⎥⎥⎥⎥⎥⎦,

eα = (1, . . . , 1)T (length Nα).

Here, Nα is the size of population α. We can then write G(s)
as

G(s) = UT(I − DhW )−1DhU. (23)

Note that Dh and U “commute” due to their matching block
structure, that is

DhU = UD′
h, where D′

h = diag(h1, . . . , hk ).

For simplicity, we will use the notation Dh to represent
D′

h whenever the meaning is clear from the dimensions of
matrices.

Similarly as for Theorem 1, we can rewrite the multipop-
ulation network transfer function G(s) in terms of population
specific motif cumulants that reflect node type identities in
addition to connection structure.

Theorem 7. For a multipopulation network with dynamics
satisfying Eq. (23), the network transfer function can be
written as

G(s) =
(

I −
∞∑

n=1

NnDf κ̃n

)−1

Df Dh, (24)

where κ̃n is the motif cumulant (k × k matrix) of DhW

for length n chains, defined via the recursive relations with
(matrix) motif moments [37],

μ̃n = 1

Nn
D−1

f UT(DhW )nUD−1
f , (25)

μ̃n =
∑

{n1,...,nt }∈C(n)

[(
t−1∏
i=1

κ̃ni
Df

)
κ̃nt

]
. (26)

Here, C(n) is the set of all compositions (ordered partitions)
of n, and the diagonal matrix Df = diag(N1/N, . . . , Nk/N ).

Here, we have combined the hα filters with W to define the
motif statistics for the effective coupling matrix W̃ = DhW .
This is indicated via the tilde over μ and κ .

In the theorem above, we needed to introduce population
specific motif moments (μ̃n)αβ and cumulants (κ̃n)αβ (the
entries of μ̃n and κ̃n). The meaning of (μ̃n)αβ is the frequency
or probability of n-length chains with start and end nodes in
populations β and α, respectively. The decomposition relation
of population motif cumulants (26) is a matrix version of
Eq. (4), and is formally identical if the multiplication of
two matrix objects A,B is implemented as ADf B [37]. The
insertion of Df here provides the proper weights for averaging
between populations with different sizes.

Moreover, the resummed motif cumulant expression of
G(s) [Eq. (26)] looks almost identical to the single population
case (6), and indeed can be proved in the same way, if we
replace scalar quantities with k × k matrices (motif moments
or cumulants) and again insert Df = diag(N1/N, . . . , Nk/N )
for matrix multiplications as described above.

We can also directly express κ̃n in terms of motif cu-
mulants of the original connectivity matrix W as opposed
to the filter-weighted matrix DhW . This will also lead to a
multipopulation version of the feedback diagram (Fig. 13). We
illustrate this for the case of two populations. Let κ

αβ

1 be the
motif cumulant of W for length 1 chains starting in population
β and ending in population α. Similarly, let κ

αβγ

2 be the motif
cumulants of W for length 2 chains with the three nodes in
population γ, β, α, respectively, and so on for higher-order
motifs.
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FIG. 13. Feedback diagram that gives the network transfer func-
tion matrix G(s ) for networks with two populations (different col-
ors/shades). Various green triangles are feedbacks corresponding to
population specific motif cumulants.

By enumerating the population identity of nodes in chain
motifs, it is easy to show that

Df κ̃1 = Df Dh

[
κ11

1 κ12
1

κ21
1 κ22

1

]
, (27)

Df κ̃2

= Df Dh

[
N1
N

h1κ
111
2 + N2

N
h2κ

121
2

N1
N

h1κ
112
2 + N2

N
h2κ

122
2

N1
N

h1κ
211
2 + N2

N
h2κ

221
2

N1
N

h1κ
212
2 + N2

N
h2κ

222
2

]
.

(28)

The above formulas motivate defining h̃α = Nα

N
hα , α = 1, 2,

and Dh̃ = Df Dh = diag(h̃1, h̃2) to simplify the expressions.
Using this notation, we can, for example, rewrite Eqs. (27)
and (28) as

Df κ̃1 = Dh̃

[
κ11

1 κ12
1

κ21
1 κ22

1

]
, (29)

Df κ̃2 = Dh̃

[
h̃1κ

111
2 + h̃2κ

121
2 h̃1κ

112
2 + h̃2κ

122
2

h̃1κ
211
2 + h̃2κ

221
2 h̃1κ

212
2 + h̃2κ

222
2

]
. (30)

Plugging Eqs. (29) and (30) and analogous expressions at
higher orders into Eq. (24) gives a series expression of G(s)
in terms of population specific motif cumulants such as κ

αβγ

2 .
Based on these calculations [Eqs. (29) and (30)], we

construct a feedback diagram for the formula in Theorem 7
(Fig. 13). The feedback diagram consists of two (infinite)
perfect binary trees, whose roots have an in and out node
and a link between the two, carrying filters h̃α = Nα

N
hα . The

rest of the trees grow from the out nodes. Each left branch
has a filter h̃1 and each right branch has a filter h̃2. At every
node of the binary trees (i.e., all nodes except for the two
in nodes), there are two links connecting to nodes in(1) and
in(2), respectively. The strength of such feedback links is
determined by population specific chain motif cumulants as

Nnκ
αpathβ
n . Here, “path” in the superscript is the sequence

with 1 or 2 denoting left or right branches traveled along the
path from the root to this node (starting from the end of the
sequence); β is the index of the tree that the node belongs to,
and α is the index of the in node that the link connects to.
Sending input into one of the two in nodes and reading it out
from one of the two out nodes gives the corresponding entry
in the 2 × 2 matrix G(s).

Finally, we can generalize the relation between the cutoff
time constant and motif cumulants for networks with multiple
node populations.

Theorem 8. Assume that the node filter for a population
hα (s) decreases asymptotically as 1/sgα for large s and gα >

0, with a time constant τα . We form a “scalar” transfer
function based on the matrix of the network transfer functions
G(s) via a linear combination using vectors B̂ and Ĉ:

Ĝ(s) = ĈTG(s)B̂.

Then, the time constant of Ĝ(s) is ( ĈTf (Dτ )B̂
ĈTDf B̂

)
1
g0 , where f (Dτ )

is a matrix acquired by replacing the diagonal matrix Dh in
Eq. (24) (and inside the definition of κ̃n) by another diagonal
matrix Dτ :

Dτ = diag
{
τ

g1
1 , . . . , τ

gk

k

}
,

f (Dτ ) =
(

I −
∞∑

n=1

NnDf κ̃n

)−1

Df Dτ .

The degree of asymptotic decay of Ĝ(s), g, is determined by
both the vectors B̂, Ĉ and the motif cumulant structure of W .
In the special case when gα ≡ g0 are all equal, and ĈTDf B̂ 
=
0, we have g = g0.

Proof. As in the proof of the single population case, the
time constant of Ĝ(s) is determined by Ĝ(0) and its leading
term of asymptotic decay with s.

For Ĝ(0),

Ĝ(0) = ĈTG(0)B̂ (31)

and we can evaluate G(0) using Eq. (24), which is simply
replacing Dh with

diag(h1(0), . . . , hk (0)) = diag
(
τ

g1
1 , . . . , τ

gk

k

) = Dτ

in Eq. (24). In other words, G(0) = f (Dτ ), using the defini-
tion of f (·) given in the statement of the theorem.

To determine the leading decay term in the special case
when the gα = g0 are all equal, we can expand Eq. (24) in
terms of powers of hα ,

Ĝ(s) = ĈTG(s)B̂ = ĈT(I + NDf κ̃1 + · · · )Df DhB̂.

(32)
Using the assumption that ĈTDf B̂ 
= 0, the first term in
Eq. (32)

ĈTDf DhB̂ ≈ 1

sg0
ĈTDf B̂ as s → ∞.

The order of s, as s → ∞, for all other terms in Eq. (32)
is at most −2g0. Therefore, G(s) decays as ĈTDf B̂/sg0 .
Combining with Eq. (31), we conclude that the timescale of

Ĝ(s) is ( ĈTf (Dτ )B̂
ĈTDf B̂

)
1
g0 . �
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VIII. DEGREE-CORRECTED MOTIF CUMULANTS κ
deg
n

THAT IMPROVE THE DESCRIPTION OF THE
NETWORK TRANSFER FUNCTION

In this section, we develop a modified version of motif
cumulants that allows for describing networks with strong de-
gree heterogeneity, which is a common feature in many real-
world networks. This method, which we call degree-corrected
motif cumulants κ

deg
n , therefore significantly broadens the

applications of our theory. The κ
deg
n , while slightly more

complex than the original κn, can produce highly accurate
approximations for G(s) when the corresponding series is
truncated to use only κ

deg
1 and κ

deg
2 , even when this approach

fails for the original κn. Importantly, the κ
deg
n can be expressed

in terms of the original κn through algebraic combinations,
and thus are also local network statistics and require no addi-
tional information (such as the degree distribution) about the
connectivity. As an application, we use this degree-corrected
motif cumulant theory to describe networks with stronger
effects from motif cumulant κ2 (Figs. 15 and 16).

We start from the following general result, but without
going into details as its careful exposition will be the subject
of future work. It is possible to carry out the resumming for
Eq. (3) for arbitrary weights B, C analogously to Eq. (6):

GBC (s) = NBC

(
1 −

∞∑
n=1

NnκBC
n hn(s)

)−1

h(s). (33)

Here, NBC = CTB, �BC := I − 1
NBC BCT. We use notation

GBC (s) instead of G(s) to signify the use of weights B, C.
Unless stated otherwise, In this section G(s) = Gee(s) means
the uniform weight case where B = C = l = (1, . . . , 1)T (it
differs from previously by a constant N ). The key ingredient
in Eq. (33) are weighted “motif moments” μBC

n and “motif
cumulants” κBC

n , defined as

μBC
n = 1

NnNBC
CTWnB,

κBC
n = 1

NnNBC
CTW (�BCW )n−1B.

Importantly, the same decomposition relation (4) also holds
for μBC

n and κBC
n .

A special case of the generalized resumming formula is to
choose B, C as in- and out-degrees of W , that is,

B = Wl, CT = lTW.

This choice of B, C is in order to form a most effi-
cient weighted motif cumulant series in the resummed for-
mula (33), and motivated by observations and heuristic ar-
guments about eliminating the dominant eigenvalue of W in
�W�, based on the degree vector approximating the Perron-
Frobenius vector for W . This is partially discussed in [37],
and again we will save exposition of further details for future
work.

Another advantage of choosing B,C as degrees is that
Eq. (33) can be directly related to the original G(s) and regular
motif cumulants, thus requiring no additional information of
the network connectivity. To signify this special choice of

B, C, we will use the notation Gdeg(s), μ
deg
n , κ

deg
n , and Ndeg

as a special case for GBC (s), μBC
n , κBC

n , and NBC .
For general W (with nonuniform degrees), the network

transfer function Gdeg(s) given by Eq. (33) is different from
G(s), the latter being based on uniform input and output
weights. Nonetheless, these are related:

Gdeg(s) = CT[I − h(s)W ]−1Bh(s)

= lTW [I − h(s)W ]−1Wlh(s)

= lT
∞∑

n=2

h(s)n−2Wnlh(s)

= N

h2(s)
[G(s) − h(s) − Nκ1h

2(s)].

Therefore,

G(s) = 1

N
h2(s)Gdeg(s) + h(s) + Nκ1h

2(s). (34)

The next step is to write Gdeg(s) in terms of the original κn.
Given Eq. (33), this boils down to expressing κ

deg
n in terms of

κn. The basic relationship is through the motif moments μ
deg
n

and μn:

μdeg
n = 1

Nn+1

lTl

CTB
CTWnB = μn+2

μ2
. (35)

Equation (35) has an intuitive explanation: μ
deg
n is probability

of length n chains when each count is weighted by the
out-degree of the “sending” node times the in-degree of the
“receiving” node.

Using Eq. (35) and the combinatorial relation (4) (same
for degree-corrected motifs), we can derive the needed
relationship among motif cumulants. For example,

κ
deg
1 = μ3

μ2
= κ3 + 2κ2κ1 + κ3

1

κ2 + κ2
1

,

κ
deg
2 = μ

deg
2 − (

μ
deg
1

)2 = μ4

μ2
−

(
μ3

μ2

)2

= κ4κ2 − 2κ3κ2κ1 + κ3
2 + κ4κ

2
1 − κ2

3

μ2
2

,

κ
deg
3 = μ

deg
3 − 2μ

deg
2 μ

deg
1 + (

μ
deg
1

)3

= μ5

μ2
− 2

μ4μ3

μ2
2

+
(

μ3

μ2

)3

= 1

μ3
2

(
κ5κ

4
1 + κ5κ

2
2 + 2κ5κ2κ

2
1 + 2κ2

3 κ2κ1

+ 3κ3κ
2
2 κ2

1 + κ3
3 − 2κ4κ2κ

3
1 − 2κ4κ3κ

2
1

− 2κ4κ
2
2 κ1 − 2κ4κ3κ2 − κ2

3 κ3
1 − κ4

2 κ1
)
.

Using these expressions for κ
deg
n together with Eqs. (33) and

(34), we can express G(s) in terms of κn, and similarly draw
a feedback diagram representation (Fig. 14). The lower part
of the diagram, beginning with the link κ

deg
1 , corresponds to

Gdeg(s) and has essentially the same structure as the original
diagram Fig. 4. The remaining few links on the top correspond
to the additional terms in Eq. (34). Despite differences to
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FIG. 14. Feedback diagram for the expression of G(s ) using
degree-corrected motif cumulants κdeg

n .

Eq. (6), the two expressions are equivalent, in the sense that
when being expanded as an infinite series in powers of h(s),
the coefficients containing κn should be the same.

The real difference (and advantage) of Eq. (34) can be un-
derstood as a reordering of the terms in an infinite series. The
reordered series may have a different convergence region [in
terms of h(s)], and differ in value for finite truncations. This
latter property is what leads to the improved approximations
of the network transfer function based on the statistics of small
motifs alone.

A. Networks with stronger impact from κ2

Here, we consider similar examples of complex networks
as in Sec. IV, but with stronger effects from these higher-order
motif cumulants. To achieve this, we vary the motif cumulant
κ2 while leaving the other motif cumulants as close to zero as
possible. One way to do this is to generate Gaussian networks
as described in Appendix I. In this case, κ1 = 0 as the entries
have zero mean, and higher-order cumulants κn�3 = 0 thanks
to properties of Gaussian random variables. The numerical
effect of κ2 for these Gaussian networks is similar to the
examples discussed below (Figs. 15 and 16).

Note that Gaussian networks are densely connected, in the
sense that nodes are all to all connected with continuously
distributed connection strengths. We can also achieve simi-
lar effects for “sparsely connected” networks where only a
fraction of the connections are nonzero. We accomplish this
in two steps. First, to set κn�3 small (but nonzero), we draw
networks from the graph model of second order networks
(SONETs [40]), which generalizes the Erdős-Rényi graph
by allowing nonzero κ2 and produces a sparse, binary W (it
degenerates to a ER graph when κ2 = 0). Next, to set κ1 = 0,
we apply a global feedback of −Nκ1y(t ). As explained in
Sec. III, this will set the effective κ1 = 0 while keeping all
other κn the same, and is equivalent to adding a constant of
−κ1 to all Wij .

The standard motif cumulant theory [Eq. (6)] that works
well for the Gaussian networks and the SONETs with small

FIG. 15. Stronger effect of the length-2 chain motif cumulant κ2

on shaping the network transfer function G(s ), for networks with
node filter hexp(s ). The networks W ’s are generated from the SONET
random graph model (Appendix I 2). Network size is N = 1000,
connection probability κ1 = 0.1, and κ2/κ

2
1 = −0.6, 0, 0.1, respec-

tively, for the three columns from left to right. Higher-order motif
cumulants κn�3 are small (see Appendix J). To emphasize the effect
of κ2, a global (negative) feedback is applied to all three networks
to shift κ1 to 0 without changing higher-order motif cumulants. The
blue solid lines are calculated by directly solving the system (3) using
entire connectivity matrix W . The red dashed lines are calculated
using only the first two degree-corrected motif cumulants κ

deg
1 and

κ
deg
2 (see Sec. VIII), along with a formula analogous to Theorem 1.

The same connection strength constant multiplies W for the three
networks. The value of this constant is set to be 90% of the maximum
value under which all three networks are stable. The parameters used
are detailed in Appendix J 1.

coupling strength starts to break down at strong coupling for
SONETs. Higher-order motif terms have to be included in
Eq. (6) to generate a good approximation of G(s) for the
positive κ2 networks (need up to κ5 terms to achieve the
accuracy similar to the dashed lines in Figs. 15 and 16).
Moreover, for the case of κ2 < 0, keeping more terms in
Eq. (6) will not improve the approximation and can even make
it worse! The problem is that the condition in Theorem 1 about
the spectral radius is no longer satisfied, and the infinite series
of motif cumulants in the denominator of Eq. (6) diverge.

These difficulties for describing strong motif cumulant
effects for “sparse” networks can be resolved by using the
degree-corrected motif cumulant theory that we developed
above. By truncating Eq. (33) after κ

deg
2 , we achieve very

accurate approximations to G(s) (red dashed lines in Figs. 15
and 16).

Figures 15 and 16 show the impact of varying κ2 for two
different nodal filters hexp(s) (exponential decay) and hcos(s)
(oscillating decay), respectively. First, the middle columns
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FIG. 16. Same as Fig. 15, but for networks with node filter being
hcos(s ).

show the case with all κn very close to 0: the network used
here is an Erdős-Rényi network and a global feedback is
applied to shift κ1 to 0. We therefore recover the original
node filter G(s) = h(s). Next, the right columns show that
increasing κ2 to positive values has a roughly similar effect
on network transfer functions as increasing κ1, for both of the
filters.

Intriguingly, however, the left columns show that networks
with negative κ2, fewer chain motifs, produce qualitative
changes in the network transfer functions (not seen in the
networks with weaker κ2 effect). For the exponential node
filter hexp(s) (Fig. 15), a frequency peak is generated the Bode
plot for response magnitudes. For the decaying-oscillatory
filter hcos(s) (Fig. 16), the original resonant peak splits into
two peaks. As κ2 becomes more negative still, the peak seen
for hexp(s) increases its magnitude, and the twin peaks for
hcos(s) become more separated (data not shown). The effects
of chain motif cumulants are also reflected in the impulse
response functions. In particular, note the emergence of a neg-
ative response window for hexp(s) node filters, and irregular-
looking oscillations in the impulse response for hcos(s).

IX. APPLICATIONS TO REAL-WORLD NETWORKS

A. Mouse brain connectivity

We applied our motif cumulant based theory, in particular
the relation between motifs and the response time constant,
to recent network data on whole-brain mesoscale connectivity
between 213 brain regions of the mouse brain [Fig. 17(a)].
The network is complex, as described by significant motif
cumulants of many orders [Fig. 17(a)].

Our first result is that the motif structure of the brain-wide
network extends the time over which the network remembers
“sensory” input signals, specifically, those passed into the

FIG. 17. Mesoscale mouse brain network dynamics. (a) Mouse
brain mesoscale connectivity organized according to anatomical
groups (Crbl: cerebellum, HyTh: hypothalamus, nuc.: nuclei); red
dotted connections originate from 11 sensory thalamic nuclei; re-
maining connections are shaded proportional to connection strength,
from [41]. (b) The network-wide motif cumulants magnitude (Ap-
pendix F) of the original network do not decay rapidly with order
(size), resulting in a long timescale of the network transfer function
(inset) for a global input and readout. (c) The impulse response
function (red solid line, main and inset) exhibits multiple timescales.
The input signal is sent uniformly to sensory thalamic nuclei and
read out from all regions. Black dashed lines depict successive (im-
proving) approximations to this response computed by considering
additional motif cumulants up to order 3. Inset: When the network
is modified by either performing a node-degree preserving shuffle
(thin blue lines), or by setting every connection to a strength equal to
the mean of the original log-normal weight distribution (red dashed
line), the long-time memory capacity of the network is diminished.
(d) Comparing timescales of the whole-brain responses to cortical
signaling from higher level cortical areas (magenta, upper curve)
and to input from sensory thalamus [green, lower curve, same as in
(c)]. Inset is plotting in log-y scale. (e) Estimations of time constant
for the thalamic input response (c) by successively including higher-
order motif cumulants. (f) Same as (e) except input is sent through
higher level cortical areas.

network via the sensory thalamic nuclei [the brain areas that
relay sensory input to cortical areas, Fig. 17(c)]. We also find
that the underlying motifs introduce multiple timescales into
this process [the nonlinear decay on log-y plot of impulse
response, Fig. 17(c), inset]. Both of these effects largely
vanish when we perform a node-degree preserving shuffle on
the network [Fig. 17(c), inset]. This shows these effects come
specifically from higher-order chain motifs which the shuf-
fling destroys (in particular, the second order diverging and
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(a) (b)

(c) (d) (e)

FIG. 18. Application to the C. elegans neuronal network and a power grid network. (a) The C. elegans network [5] shows long-timescale
response (red solid line) that is much shortened when higher-order motif cumulants are removed (blue dashed line). (b) Similar as Figs. 17
(e) and 17(f); how motifs of various orders contribute to the extension of the time constant seen in (a). For the power grid network of western
states in the U. S. (c)–(e) [5], when the stimulus is sent to all the nodes, the motifs has only small effects on the impulse response (c). In
contrast, when input to only the hub nodes (4.2% of nodes with the highest degrees), the impulse response has a larger time constant and the
effect of higher-order motifs become larger (d), (e). The original network with 4941 nodes is undirected. In the simulation, edges are made
bidirectionals.

converging motifs [Fig. 2(a)] are preserved, see Appendix H).
The matching between the shuffled networks and the result
of keeping only first order motifs κ̃1 [Fig. 17(c), inset; see
also Fig. 19 for another example] also confirms our theory
(Theorem 7) in a real-world network.

The motif cumulant analysis also reveals interesting differ-
ences between how the mouse brain network responds to such
sensory inputs vs how it responds to “top down” signaling
from higher level brain areas that may be central to functions
such as decision making. While the exact list and function
of such higher level areas in the mouse brain is the subject
of ongoing research, we consider a proxy for higher-order
inputs by passing input via cortical areas that are generally
considered to be not immediately related to sensory or motor
signals (see Appendix J 5 for the list of areas we use). We
read out the response from all brain areas, precisely as for the
sensory input case of Fig. 17(c). Comparing the network re-
sponses with sensory thalamic vs higher-order cortical inputs,
we find the following intriguing result: While in both cases
the motif structures extend the time constant of the network
response, higher-order cortical inputs lead to a significantly
longer-timescale response [Fig. 17(d)], consistent with what
would be expected for, say, higher-order signals that might
slowly regulate brain or behavioral states. Moreover, longer
chain motifs contribute significantly to the extension of time
constant for higher-order cortical signaling, whereas the effect

for the thalamic input mostly comes from the chains up to
length 3 [Figs. 17(e) and 17(f); see also Fig. 19].

B. Power grids and the C. elegans neuronal network

We next apply our results to two further real-world net-
works of broad interest: the C. elegans neuronal network
and a power grid network [5] (Fig. 18). First, for the C.
elegans network (with uniform global input and readout to
all neurons), we find that, despite differences in the spatial
scales (single neurons versus brain areas) and species (worm
vs mouse) when compared to the mouse brain network studied
above, we once again observe that contributions from motif
cumulants both extend the time constant beyond that for a
random shuffled network and result in multiple timescales in
the network response (Figs. 17 and 18).

For the power grid network receiving global input (to all
nodes), we find that motifs (beyond first order) only have rel-
ative small effect on the response function [Fig. 18(c)]. How-
ever, if we instead deliver input selectively to only the high de-
gree hub nodes in the network, the network response now has
a much larger time time constant, and the contribution from
higher-order motifs becomes more pronounced [Figs. 18(d)
and (e)]. This both suggests and explains via a tractable set
of connectivity features a distinct functional role for the hub
nodes in long-timescale signaling across the entire power grid.

062312-16



FEEDBACK THROUGH GRAPH MOTIFS RELATES … PHYSICAL REVIEW E 98, 062312 (2018)

SUMMARY

There is vast interest in relating network structure and
dynamics across many fields. Recent advances have shown
how highly local (and therefore easily quantifiable) connec-
tivity features, or network motifs, predict global levels of
synchrony in the intrinsic dynamics generated autonomously
in networks [13,37]. In this paper, we show that a similar
approach bears fruit in predicting the network response to
external, temporal stimuli. In particular, we study the signal
filtering property of a recurrently connected network of LTI
units, or equivalently applicable to, linearly interacting point
process networks. We showed that the network transfer func-
tion is exactly determined by the chain motif cumulants of
different lengths [Eq. (6)]. These measure the extent of over-
represented consecutive paths through the network, compared
with what is expected from a hierarchy of lower-order graph
statistics. Importantly, only a few lower-order motif cumulants
are often needed to form accurate predictions of the network
transfer function. Our theory thus provides a way of inferring
a basic global functional property of a network based on
partial, local observations of its connectivity. Our approach
is complementary to spectral graph theory [42]: indeed, the
eigenvalues of a graph and motifs can be directly related [43].

For some networks, however, we showed a limitation of
our first theory (Theorem 1). The approximations made by
retaining lower-order motif cumulant terms in Eq. (6) start
to deteriorate and may lead to an unstable approximation of
the network transfer function, even though the true transfer
function is stable and well defined. To resolve this issue,
we developed an improved version of motif cumulant theory
and a corresponding formula relating these motif cumulants
to the network transfer function. This can be thought of
as “correcting” for heterogeneous degrees among the nodes
(Sec. VIII). This degree-corrected theory improves the accu-
racy of motif-based predictions extending them to regimes
where the original theory may not apply.

The network time constant, which measures for how long
past signals influence the future network response, is closely
related to the network transfer function we study here. We
explicitly link the time constant to the motif cumulants (The-
orem 4), and show across many networks that the presence
of higher-order motifs can lead to a large change of the time
constant that would not be predicted based on the first order
motif cumulant (connection probability) alone (Fig. 7).

Beyond the idealized case where signals read into and out
of networks via uniform weights, we considered two types of
extensions. We generalized our theory to allow feeding input
into or reading output out of a subset of nodes based on their
population identity (Theorem 7). The connectivity statistics
(motif cumulants) and dynamics of each node may also differ
from one population to the next. This extension allows for
broader applications of our theory and for a greater variety
and richness of network transfer function to be predicted for a
given network.

Another important extension to our theory begins by con-
sidering the robustness of our theory to noise in the input
and readout weights. We prove that large networks are indeed
robust to the independent perturbations in these weights (The-
orem 5). Interestingly, however, if the fluctuations of weights

are correlated from node to node, the resulting network trans-
fer function will have an additional term that depends on the
cycle (and chain) motif cumulants in the network [Eq. (21)].
How might such correlations, and resultant changes in the
network transfer properties, arise? One possible mechanism
in the context of neural networks is through synaptic plasticity
or learning processes. This points to interesting directions for
future study where the input and output weights are outcomes
of a learning process, during which the recurrent network
is trained to achieve an input-output function [44,45]. To
describe more powerful functionality, future work will also
need to incorporate nonlinear dynamics at each node, over
and above the linearization taken here. We hope that this work
opens the door to such extensions, likely by providing the first
terms in an expansion across orders of nonlinearity.

This work, at the interface of network science, statistical
physics, and systems engineering, has clear practical and
scientific implications. For one, localized connectivity, quan-
tified through motifs, is relatively easy to sample and compare
among systems [9–11]. Even more exciting, in neural systems,
this localized connectivity is under the control of learning,
plasticity and adaptation mechanisms [46,47]. Thus, our work
may inspire new analyses of the natural learning and adaption
of network function.
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APPENDIX A: USE LTI TO MODEL LINEARLY
INTERACTING POINT PROCESS

Here, we show that a similar set of equations with LTI
units as Eq. (1) can be used to model interacting point
process [33,34]. Let λi (t ) be the (stochastic) instantaneous
firing rate of neuron i. Spike trains (point process) Si (t ) are
generated by an inhomogeneous Poisson process according
to the rate λi (t ). We assume that λi (t ) is always or for most
of the time positive, so that it serves as a legitimate Poisson
rate. Neurons interact with each other through the spike trains
filtered by a nodal kernel h(t ):

λi (t ) = λ0 +
∫ t

−∞
h(t − t ′)

⎛
⎝∑

j

WijSj (t ′) + Biu(t ′)

⎞
⎠dt ′.

(A1)
Here, λ0 is a constant baseline firing rate. In absence of signal
u(t ), the steady state firing rate λ̄i satisfies

λ̄i = λ0 + h0

∑
j

Wij λ̄j ,

where h0 = ∫ ∞
0 h(t )dt .
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Now, we consider how the average firing rate changes over
time when there is a time dependent signal u(t ). Let �λi (t ) =
E[λi (t )] − λ̄i , where the expectation is taken across trials
while fixing the signal u(t ). For example, E[Si (t )] = E[λi (t )].
Taking expectation over Eq. (A1), we have

�λi (t ) =
∫ t

−∞
h(t − t ′)

⎛
⎝∑

j

Wij�λj (t ′) + Biu(t ′)

⎞
⎠dt ′.

(A2)
This is the same set of equations for a network of linear time-
invariant (LTI) nodes.

APPENDIX B: PROOF OF A RANDOM MATRIX
PROPERTY LEMMA 1

Lemma 1. For some absolute constant C, the probability
that the following inequality ho lds approaches 1, as N → ∞:

‖W�‖ � C
√

N. (10)

Proof. We split the norm into two terms

‖W�‖2 = ‖W − pNeeT + pNeeT − WeeT‖2

� ‖W − pNeeT‖2 + ‖pNeeT − WeeT‖2. (B1)

The bound of the first term is a typical result in random matrix
theory, for which we will rely heavily on the reference [48].
Note that W − pNeeT has Bernoulli distributed i.i.d. entries.
According to Lemma 5.24 in [48], the rows of this matrix are
independent sub-Gaussian isotropic random vectors (Defini-
tions 5.22 and 5.19 in [48]) with sub-Gaussian norm bounded
by some absolute constant K . We can then apply Theorem

5.39 in [48] about matrices with sub-Gaussian rows to W −
pNeeT, with for example t = √

N . The theorem shows

‖W − pNeeT‖2 � C
√

N (B2)

is satisfied with probability of at least 1 − 2 exp(−cN ). Here,
C and c are constants only depending on the sub-Gaussian
norm bound K and thus are also absolute constants.
As N → ∞, Eq. (B2) holds with at least probability
1 − 2 exp(−cN ) → 1.

For the second term in (B1), let μi = 1/N
∑

j Wij and
the vector �μ = (μ1 − p,μ2 − p, . . . , μN − p)T. Then, the
relevant matrix can be written as

WeeT − pNeeT =
√

N�μeT,

which is a rank-1 matrix. Therefore, its two norm is

‖WeeT − pNeeT‖2 =
√

N‖�μ‖2‖e‖2 =
√

N‖�μ‖2.

The norm of the vector

‖�μ‖2
2 =

∑
i

(μi − p)2

is a sum of i.i.d variables (μi − p)2. It is straightforward to
calculate the mean and variance of this norm, and we will then
use the Chebyshev inequality to give a bound.

For ease of notation, let Wj = Wij (since i is fixed) and
�Wj = Wj − p. We have

E[(μi − p)2] = var(μi ) = 1

N2

∑
j

var(Wij ) = p(1 − p)

N

and

var((μi − p)2) = E[(μi − p)4] − p2(1 − p)2

N2
= E

⎡
⎣
⎛
⎝ 1

N

∑
j

�Wj

⎞
⎠

4⎤
⎦ − p2(1 − p)2

N2

= 1

N4
E

⎧⎨
⎩
∑

j

�W 4
j + 4

∑
j 
=k

�W 3
j �Wk3

∑
j 
=k

�W 2
j �W 2

k + 6
∑

j 
=k 
=l

�W 2
j �Wk�Wl

+
∑

j 
=k 
=l 
=m

�Wj�Wk�Wl�Wm

⎫⎬
⎭ − p2(1 − p)2

N2

= m4

N3
+ 0 + 3(N − 1)p2(1 − p)2

N3
+ 0 − p2(1 − p)2

N2

= m4

N3
+ (2N − 3)p2(1 − p)2

N3
� 3p2(1 − p)2

N2
for large enough N

[
e.g., for N � m4

p2(1 − p)2

]
.

Here, m4 = p − 4p2 + 6p3 − 3p4 is a constant.
Applying the Chebyshev inequality to the variable ‖�μ‖2

2,

which has mean p(1 − p) and variance less than 3p2(1−p)2

N
, we

have

P

[
‖�μ‖2

2 > p(1 − p) +
√

N

√
3p(1 − p)√

N

= (1 +
√

3)p(1 − p)

]
<

1

N
.

This shows that the probability

P
[‖WeeT − pNeeT‖2

=
√

N‖�μ‖2 �
√

(1 +
√

3)p(1 − p)
√

N
]

� 1 − 1

N
,

(B3)

so that this probability goes to 1 as N → ∞.
Finally, combining the results from (B2) and (B3) with

Eq. (B1) and using the “union bound” [P (A ∪ B ) � P (A) +
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P (B )], we have

‖W�‖2 � ‖W − pNeeT‖2 + ‖pNeeT − WeeT‖2 � C
√

N

with probability approaching 1 as N → ∞, for some absolute
constant C. �

APPENDIX C: EQUIVALENCE IN STABILITY FOR
GLOBAL FEEDBACK AND MEAN-SHIFTED NETWORKS

To develop the corresponding stability condition, we imag-
ine that there is an additional N + 1st node that functions as
the global feedback. The node will have a filter that multiplies
its input by a constant, and receives input from, and provides
output to, all nodes in the original network. The stability of
this N + 1 node system is determined by studying for what
values of s ∈ C the following matrix is invertible [22]:

I(N+1)×(N+1) −
[
h(s)W hw0e

eT 0

]
=

[
1 − hW −hw0e

eT 1

]
.

Using the Schur complement, this matrix is invertible if and
only if I − h(s)(W + w0

N
eeT) is invertible. This is precisely

the stability condition for the network with all entries being
shifted by w0

N
, and shows the equivalence between global

feedback and adjusting κ1 in terms of stability.

APPENDIX D: EXPLAINING EFFECTS OF κn BASED
ON POLES OF G(s)

Given the form of Eq. (6), the poles of G(s) can be de-
termined by studying the roots of the denominator. Assuming
that the first m of κn are significant while κn>m ≈ 0, the set of
poles of G(s) is

hinv(z),

z ∈ root{P (z) = Nmκmzm + Nm−1κm−1z
m−1 + · · ·

+ Nκ1 − 1}.
Here, hinv(·) is the (complex) inverse function of h(s). For the
two filters hexp(s), hcos(s) we use (Appendix J 1), hinv(s) can
be readily characterized analytically. Moreover, if we idealize
the networks above so that only κ1 and/or κ2 are nonzero, P (z)
is a first or second order polynomial, which is readily solvable.
Taking these facts together, one can explain the qualitative
changes seen in the network transfer function G(s) when κ1

and κ2 are varied. This includes the slower temporal decay
seen with positive κ1 in the case of hexp(s), the split of the
resonant peak with negative κ2 in the case of hcos(s), and so
on. Details of the analysis are given below.

The number of poles of G(s) is determined by the number
of roots of P (z) and #hinv(z). Here, #hinv(z) is the num-
ber of preimages of z under the mapping h(s). It can be
shown that #hinv

exp(z) ≡ 1 for all z ∈ C and #hinv
cos(z) ≡ 2 for all

z ∈ C\{− 1
2ν

, 1
2ν

}. Therefore, when using these node transfer
functions, for most cases, the number of poles for the network
transfer will be determined by the number of roots of P (z).
This number is the degree m by the fundamental theorem
of algebra. In particular, we conclude that the numbers of
poles of G(s) are 1 for hexp and 2 for hcos in the case of
κ1 
= 0, κn�2 = 0; and are 2 for hexp and 4 for hcos in the case
of κ2 
= 0, κn�3 = 0. This difference in the number of poles
as the network connectivity changes reflects the qualitative

changes that we see in the network transfer functions G(s)
(Figs. 15 and 16).

To make this more precise, we study the location of the
poles. For the exponential filter hexp, there is one (simple) pole
−α on the real line. The decaying-oscillatory filter hcos has a
pair of complex conjugate poles −α ± νi. In general, a pair
of complex conjugate poles will give rise to a peak in the
frequency domain and real poles correspond to exponential
decay. As we have seen in these two examples, the magnitude
of the real part of the poles determines the speed of decay
in time domain, or the width of the frequency peak. A last
fact that we will use is the symmetry of h(s) with respect to
complex conjugate, that is h(s) = h(s̄).

For the case of κ1 
= 0, κn�2 = 0, P (z) always has one real
root 1

Nκ1
. By the symmetry under conjugacy, this real root is

mapped to one real pole under hinv
exp(z) and to a pair of conju-

gate poles under hinv
cos(z). As κ1 increases (decreases), the real

parts of those poles, Nκ1 − α and Nκ1/2 − α respectively for
the two filters, increase (decrease) and result in the changes of
time constant [hexp(s)] or peak width [hcos(s)].

For the other case where κ2 
= 0, κ1 = κn�3 = 0, P (z) can
either have two real roots or a pair of complex conjugate roots,
depending on the sign of κ2. When κ2 > 0, each of the real
roots is similarly mapped under hinv(z) as in the previous case.
The poles corresponding to one of the two real roots domi-
nates the effect on the time constant or peak width. When κ2 <

0, the complex root pair is mapped to two complex poles under
hinv

exp(z), which generate the observed oscillation in the impulse
response. Under hinv

cos(z), each complex root is mapped to two
nonconjugate complex poles with different imaginary parts,
while the image of the other root is exactly the conjugate
of these poles. All together, the complex root pair of P (z)
are mapped into four poles, occurring as two conjugate pairs.
The fact that these pole pairs have different imaginary parts
explains the observation of two distinct frequency peaks.

The arguments above show how the roots of P (z) deter-
mine qualitative properties of the network transfer function
G(s). This is interesting because P (z) is determined com-
pletely by the network’s motif statistics, independent of the
nodal dynamics h(s). For example, in Figs. 15 and 16, as κ2

becomes negative, the roots of P (z) switch from two real ones
into a complex pair. Correspondingly, G(s) seems to undergo
a type of “bifurcation” in the case of both h(s) functions. We
suggest that although the specific changes in G(s) depend on
details of h(s), the onset of the transition is often determined
by alone P (z), which is also a form of “generating function”
for motif cumulants.

APPENDIX E: PROOF OF THE CONVERGENCE OF G(s)
UNDER INDEPENDENT RANDOM INPUT

OUTPUT WEIGHTS THEOREM 5

Theorem 5. Let κn be the motif cumulants of a sequence of
W , whose size N → ∞. Assume that each κn has a limit κ∞

n

as N → ∞. Additionally, we assume a bound on the norm
of W ,

‖W‖2 � (1 − δ)
N

maxs |h(s)| , (13)
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for some fixed positive constant δ. Let G(s) be the (random)
transfer function for networks with connection matrix 1

N
W ,

and random i.i.d. input/output weights B,C with mean θ =
1√
N

and variance σ 2 = σ 2
0

N
(σ0 is a constant). Then, we have the

following convergence network transfer function as N → ∞:

G(s) → G∞(s) uniformly in s, (14)

where G∞(s) = (1 − ∑∞
n=1 hn(s)κ∞

n )−1
h(s).

Proof. First, we will show that the convergence κn →
κ∞

n along with (13) implies the convergence of E[G(s)] →
G∞(s). Note that

‖�W�‖2 � ‖�‖2‖W‖2‖�‖2 = ‖W‖2.

Therefore, by (13),

1

N
|h(s)|‖�W�‖2 � 1

N
|h(s)|‖W‖2 � 1 − δ.

This inequality can be used with the matrix expression for
κn, Eq. (5), to show that |hn(s)κn| � (1 − δ)n. This geomet-

ric bound (in n) guarantees that
∑∞

n=1 |hn(s)κn| is bounded
independent of N and W , and

∑∞
n=1 hn(s)κn converges ab-

solutely to
∑∞

n=1 hn(s)κ∞
n < ∞ (by dominant convergence).

The above leads to

E[G(s)] =
(

1 −
∞∑

n=1

hn(s)κn

)−1

h(s)

→
(

1 −
∞∑

n=1

hn(s)κ∞
n

)−1

h(s) = G∞(s).

Furthermore, the convergence is uniform in s as we show
below. For any ε > 0, there exists an integer n1 such that
(1−δ)n1+1

δ
< ε

4 . For each of 1 � n � n1, since κn → κ∞
n , there

exists an integer Nn such that for any N > Nn,

|κn − κ∞
n | � ε

2n1[maxs |h(s)|]n .

Let Nε = max1�n�n1 Nn. For any N > Nε ,

∣∣∣∣∣
∞∑

n=1

hn(s)κn −
∞∑

n=1

hn(s)κ∞
n

∣∣∣∣∣ �
∣∣∣∣∣

n1∑
n=1

hn(s)(κn − κ∞
n )

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
n=n1+1

hn(s)κn

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
n=n1+1

hn(s)κ∞
n

∣∣∣∣∣
�

n1∑
n=1

ε

2n1
+ 2

∞∑
n=n1+1

(1 − δ)n = ε

2
+ 2(1 − δ)n1+1

δ
= ε.

This shows that
∞∑

n=1

hn(s)κn →
∞∑

n=1

hn(s)κ∞
n uniformly in s. (E1)

Using the following inequality

∣∣E[G(s)] − G∞(s)
∣∣ � max

s
|h(s)|

⎡
⎣(

1 −
∞∑

n=1

hn(s)κn

)−1

−
(

1 −
∞∑

n=1

hn(s)κ∞
n

)−1
⎤
⎦,

and composing the limit of Eq. (E1) with function (1 − x)−1,
we conclude the uniform convergence of E[G(s)] to G∞(s)
in s.

We will now use the Chebyshev’s inequality to show
the convergence of G(s) to E[G(s)] based on calcu-
lating the variance of G(s). Let P = [I − h(s)W ]−1,
we have

E[|G(s)|2] := E[CTPBCTP̄ B]|h(s)|2

= E[CTPBBTP ∗C]|h(s)|2

= E[tr(PBBTP ∗CCT)]|h(s)|2

= tr(P E[BBT]P ∗E[CCT])|h(s)|2

= tr(P (eeT + σ 2I )P ∗(eeT + σ 2I ))|h(s)|2.

Here, P̄ is the entrywise complex conjugate and P ∗ = P̄ T. In
the fourth equality, we have used the property that B, C are
independent.

Combining this with the expression for the mean [Eq. (12)]
we have

Var(G(s))

:= E
[|G|2] − |E[G]|2

= σ 4tr(PP ∗)|h(s)|2 + σ 2(eTPP ∗e + eTP ∗Pe)|h(s)|2

= 1

N2
tr(PP ∗)|h(s)|2 + 1

N
(eTPP ∗e + eTP ∗Pe)|h(s)|2.

(E2)

Given the norm condition on W , we have

‖P ‖2 = ‖P ∗‖2 � 1

1 − 1
N

‖h(s)W‖2
� 1

δ
,
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which is a constant bound independent of N and W . Using
this,

tr(PP ∗) = tr(P ∗P ) � N‖P ‖2
2 � N

δ2
,

|eTPP ∗e| � ‖eT‖2‖P ‖2‖P ∗‖2‖e‖2 � 1

δ2
,

similarly

|eTPP ∗e| � 1

δ2
.

Together, we have

Var(G(s)) � 3|h(s)|2
Nδ2

→ 0, as N → ∞.

Chebyshev’s inequality then ensures the convergence of G(s)
in probability. �

APPENDIX F: COMPARING MOTIF MAGNITUDE
ACROSS DIFFERENT ORDERS

When comparing the magnitude of motifs across different
orders, the higher-order motif cumulants are usually much
smaller because they contain more edges and are more rare
to occur. To compensate this intrinsic difference of scales,
for binary networks where all connections are of the same
strength [e.g., in Fig. 4(a)], we compute the relative magnitude
κn/p

n, where p is the connection probability.
For weighted networks where the connection strengths can

be any real number, the motif cumulants are weighted, which
leads to an ambiguity in interpreting the magnitude of motifs.
If we multiply W with a positive constant γ , its “graphical”
properties are unchanged, but the motif cumulants will not be
scaled as κnγ

n. To address this, for weighted networks [e.g..
in Fig. 17(b)], we scale W such that its spectral radius is 0.9
and calculate the motif cumulants under such a scaling.

APPENDIX G: ESTIMATING MOTIF CUMULANTS κn

BY LOCAL SAMPLING OF CONNECTIVITY

The motif cumulant κn can be estimated by randomly
sampling n + 1 nodes i1, . . . , in+1 in the network [equivalent
to having access to a random (n + 1) × (n + 1) diagonal
block of the full connectivity matrix W ]. The procedure is
as follows. For each of the samples, record whether there
is a length-n chain i1 → i2 → · · · → in+1. After a sufficient
number of such samples, the proportion of samples having
the chain structure gives an estimate of the motif moment
μn. For weighted motifs, we will replace each motif count
by the product of connection weights it contains. Once the
estimates of all motif moments μn′�n are gathered, we can
use the decomposition relation (4) between motif moments
and cumulants to calculate κn.

The following result shows that the sampling method given
above leads to an unbiased estimator of μn. Note that the
same proof can be used to establish the result for the case of
weighted motifs. In the large sample limit when the estimates
for μn converge, κn can be correctly estimated.

Lemma 2. Let 0 � i1, . . . , in+1 � N be ordered, randomly
sampled indices, allowing duplications, of a network of size

N with adjacency matrix W . We have

P (there is a chain i1 → i2 → · · · → in+1) = μn,

where μn is the motif moment of the network.
Proof. Let 1i1→i2→···→in+1 be the indicator random variable

for whether there is a length n chain i1 → i2 → · · · → in+1.
Note that for each possible index sample i1, . . . , in+1, its
probability of being chosen in the above sampling scheme is
the same, and is equal to 1/Nn+1. We have

P (there is a chain i1 → i2 → · · · → in+1)

= E 1i1→i2→···→in+1

= E Win+1,in · · ·Wi3,i2Wi2,i1

=
N∑

i1,...,in+1=1

1

Nn+1
Win+1,in . . . Wi3,i2Wi2,i1

= 1

Nn+1
eT Wne = μn.

Here, e = (1, . . . , 1)T is the uniform N -vector. We have
used the definition of motif moments (Sec. II) in the last
equality. �

We make a number of additional remarks about the random
sampling method. First, and very importantly for practical
applications, the method only requires sampling the network
locally at one time and is thus compatible with how connec-
tivity motifs are measured in many real-world applications
such as neuronal networks [10,11]. Moreover, to use sampling
data more efficiently, each time when we sample n + 1 nodes,
we can also resample and subsample from these n + 1 nodes
(allowing duplicated indices). The resampling generates more
samples [(n + 1)n+1 to be precise] for the estimation of μn.
The contribution of these resampled motifs to the estimator of
μn can be directly calculated as 1

(n+1)n+1 Ŵ
n, where Ŵ is the di-

agonal block of W corresponding to indices i1, . . . , in+1. The
subsamples of n′ + 1 � n + 1 indices from i1, . . . , in+1 can
be used to estimate μn′ . Similarly, the contribution of these
subsamplings can be directly calculated as 1

(n+1)n′+1 Ŵ
n′

. We
note that the random samples are in general not independent
so the variance of the estimator cannot not be simply derived
based on the number of samples. However, we intuitively
expect the correlations between the samples to be small when
the network size is large compared to the size of motifs being
estimated.

The level of fluctuation in the estimators of motifs will also
depend on the level of heterogeneity in the connectivity. We
expect the estimators to converge faster in more homogeneous
networks; and for strongly heterogeneous networks, the multi-
ple population theory (Sec. VII) is probably more appropriate
(see also [37] on how to identify the populations having
distinct connectivity statistics). A more complete discussion
of the convergence of these estimators of motifs as well as
exploration of more sophisticated estimation methods is an
important topic but is beyond the scope of this paper.
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FIG. 19. Comparison of degree-preserving shuffle and the theory
of truncating motifs. Same as Fig. 17(c) but for the case of sending
input to cortical areas.

APPENDIX H: SHUFFLING CONNECTIONS TO REMOVE
HIGHER-ORDER MOTIFS

Here, we describe details on the degree-preserving shuf-
fling used in Fig. 17(c) to isolate the impact of network
structure on network response. This procedure will result
in a random graph with an in-degree and out-degree distri-
bution (and connection weight distribution) identical to the
original network, but with the sources and targets of each
node redrawn independently. This can be seen by noting the
row sum and column sum (i.e., the in-degree and out-degree
of a node) of the original (left) matrix is the same as the
final (right) matrix. Importantly, this means the second order
converging and diverge motifs (Fig. 2; see also the definition
in Appendix I 1) are preserved because they can be expressed
as variances of in- and out-degrees, respectively [13,40].

On the other hand, the values in each row and column will
be in a different order, resulting in independent in- and out-
degree distributions. Thus, any remaining network structure is
due to unequal weights and degrees, but not due to any special
(i.e., nonrandom) configuration of connections beyond this.
Consequently, all higher-order chain motif cumulants but κ1

are reduced to zero.
In Fig. 17(c) (and its counterpart for cortical input Fig. 19),

we generate 100 samples of networks by independently shuf-
fling the rows and columns of the connectivity matrix W

(Fig. 20) of the mouse brain network. In these applications,

FIG. 20. Degree-distribution-preserving shuffling of network
connectivity. The shuffling produces a random network by trans-
forming the connectivity matrix for a network via a random row
permutation followed by a random column permutation. The order of
shuffling rows first and then columns (as depicted here) is arbitrary,
and can be reversed.

because we send input to a subset of brain areas (sensory
thalamic areas or cortical areas), we respect such a distinction
in the shuffling. In particular, we shuffle over each of the
four blocks of the connectivity matrix formed by two groups
of areas: input-receiving areas and the rest. Therefore, the
connectivity organization at the broad level of the groups is
respected, while any higher-order chain motif structures are
removed.

APPENDIX I: NETWORK GENERATION METHODS

We use two classes of random networks in our numerical
examples, as described in detail below. The first is the class of
“sparse” networks with the majority of entries in the connec-
tion matrix W being 0; these are generated according to the
Erdős-Rényi and the second order network (SONET) models.
The second class is dense networks, with most entries in W

being nonzero and taking continuous values; these networks
are generated via Gaussian random matrices.

The Erdős-Rényi network is generated by simply drawing
each connection independently as a Bernoulli random variable
with connection probability p. We next give the details by
which the other networks are generated.

1. Generating Gaussian networks with chain, converging,
and diverging motifs

We first consider a network with Gaussian distributed
entries Wij = ai + bj + cij , where ai , bj , and cij are all
Gaussian variables with zero means. Furthermore, assume that
all of these variables are independent, except for pairs (ai, bi ),
i = 1, . . . , N . Then, it is easy to verify that cov(Wij ,Wjk ) =
cov(aj , bj ), cov(Wij ,Wik ) = var(ai ), and cov(Wik,Wjk ) =
var(bk ). By considering the corresponding indices, one sees
that these covariances correspond to the excess probability,
or cumulants, of length-two chain, converging and diverging
motifs for large networks [assuming ai , bi , cij and (ai, bi )
have identical distributions across i, j ]:

cov(Wij ,Wjk ) = κ2,

cov(Wij ,Wik ) = κcon, cov(Wik,Wjk ) = κdiv.

By adjusting the variance and covariance of ai, bi , we can
therefore achieve various values of motif cumulants. One
can show that the resulting motif cumulants must satisfy the
following inequality constraints:

κcon + κdiv � σ 2, |κ2| � √
κconκdiv.

Here, σ 2 is the variance of the entries of W (except for entries
on the diagonal).

2. Generating sparse complex networks
with the SONET graph model

We use the SONET model of random graphs, together
with code provided by the authors of [40], to generate sparse
networks with different motif statistics. As an extension of
the Erdős-Rényi model, the algorithm generates a W with
binary entries, with a given connection probability and ap-
proximately specified second order motif cumulants (for con-
verging, chain, diverging, and reciprocal connection motifs).
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3. Generating networks with different cycle motif cumulants κ c
2

We achieve various values for the cycle motif cumulant
κc

2 via another model of Gaussian random matrices, with an
adjustable level of symmetry in the matrix entries. First, we
point out that κc

2 is directly related to the correlation coeffi-
cient ρreci of entries in the connection matrix that correspond
to reciprocal connections, such as Wij and Wij . In particular, it
can be shown that for large networks generated with Gaussian
entries (assuming no correlations except for between recipro-
cal entries), κc

2 ≈ σ 2ρreci, where σ 2 is the variance of Wij . The
argument is as follows. Below, we assume that the network
size is large and replace the sum of large number of (nearly)
independent variables by its expected value. One can show
that

κ1 = 1

N
eTWe = 0,

κ2 = 1

N2
eTW 2e − κ2

1 = O

(
1

N

)
− 0 → 0,

κc
2 = 1

N2
tr(W�W�) = 1

N2
tr(W 2) − 2κ2 − κ2

1 ,

= ρreciσ
2 + O

(
1

N

)
− 0 − 0 → ρreciσ

2.

Finally, we can readily construct Gaussian random matrices
with arbitrary levels of ρreci, while keeping all other cor-
relations among entries of W equal to 0. To do this, we
generate a W matrix as a weighted sum of a symmetric or
antisymmetric Gaussian matrix and an independent Gaussian
matrix, with special treatment for the diagonal entries (to keep
their variance the same as for other entries). This method
allows to one achieve all possible range of ρreci ([−1, 1]).

APPENDIX J: ADDITIONAL DETAILS AND PARAMETERS
FOR NUMERICAL EXAMPLES

1. Nodal filters

In the numerical examples, we set the node filter h(s)
(for all nodes in the network) to be one of two forms: an
exponential filter, or a decaying-oscillatory filter. Specifically,
we take

hexp(t ) = e−αtH (t ), L(hexp)(s) = 1

s + α
(J1)

and

hcos(t ) = e−αt cos(νt )H (t ),

L(hcos(s)) = s + α

(s + α)2 + ν2
. (J2)

Here, H (t ) is the Heaviside function, and the Laplace trans-
forms are given in parentheses.

When not stated otherwise, we set the parameters for h(s)
filters in Eqs. (J1) and (J2) to be α = 0.2 and ν = 2π/7 with
units of rad/s. We choose these values only for purpose of
concreteness and plotting: our results do not rely on these
particular values, or on the units of these parameters. The
parameters for the real-world networks are set based on the
context and described respectively for each case.

2. Connection strength and stability condition
for the network system

For convenience, we describe the connection matrix up to
a positive constant a that determines the overall magnitude of
the connection strength. For example, we may refer to W as an
Erdős-Rényi network with connection probability p, but the
actual connection matrix is 1

N
W . This constant is not written

explicitly, but is assumed to be absorbed into W .
The constants in numerical examples are often chosen

based on the largest possible connection strength that will
keep the network system stable. This largest value is de-
termined by W and h(s), and can be efficiently computed
using a semianalytic method that we describe next. The exact
stability condition for any LTI system x(s) = G(s)u(s) is that
there is no pole on the right-half-plane of complex s values.
For our model, G(s) = [I − ah(s)W ]−1, and the condition
on the poles can be translated into a condition based on the
eigenvalues of W and on a region in the complex plane defined
by h(s). The poles of G(s) satisfies

1 = ah(s)λi or
1

h(s)
= aλi,

where λi is the eigenvalue of W . If we define a region in the
complex plane

� := {1/h(z)|Re(z) > 0},
then the stability condition is equivalent to requiring that the
point cloud of eigenvalues of W scaled by a does not fall in
to �.

For the hexp(s) and hcos(s) functions we use (Ap-
pendix J 1), this region � can be determined analytically.
For hexp(s), 1/h(z) = z + α, and � = {z|Re(z) > α}. For
hcos(x) (while α < ν), the boundary of � is determined by
the curve of {z + ν2/z|z = α + x, x ∈ (−∞,−√

ν2 − α2) ∪
(
√

ν2 − α2,∞)}. In particular, the boundary has a singular
and rightmost point at 2α. These characterizations make it
easy to calculate the critical a for stability.

3. Parameters in Figs. 5 and 6

All network examples have 1000 nodes. The four networks
on the axis of κ1 (red, cyan, green, and blue) are generated
as Erdős-Rényi networks with connection probability (κ1)
0.05, 0.1, 0.2 and 0.4. The networks with nonzero κ2 (orange,
pink) are generated as SONETs (Appendix I) with connection
probability (κ1) 0.1, and κ2 = −0.6 × 10−2 and 0.6 × 10−2.
In the bar plot of motif cumulants, we normalize κn�2 as
κn/κ

n
1 .

4. Parameters in Fig. 8

In Fig. 8, we demonstrate the convergence described in
Theorem 5 with numerical examples. We generate two net-
works of size N = 100 and 1000 with Gaussian random W

(Appendix I 1) and node filter hexp(s). The two networks are
designed to have the same κn, so that, when their entries are
scaled by 1/N , the corresponding G(s) functions are identical
(with uniform weights B, C = e). Specifically, the entries
of W have zero mean and variance 0.09, are chosen to be
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correlated, so that κ2 = −0.6 × 10−2 for both of the matrices.
All other κn are approximately 0 by construction.

The G(s) under uniform weights are the red curves in
Fig. 8, which are also the average E{G(s)}. For each W , we
compute 100 realizations of randomly chosen input and output
weights by drawing B,C as i.i.d. Gaussian variables with
mean θ = 1√

N
and variance σ 2 = 0.8

N
(the scaling with N al-

lows comparison across different network size). The resulting
100 realizations of G(s) are plotted as blue traces. We see that
of these realizations cluster around E[G(s)] more tightly as
the network size increases. The gray areas are representing the
90% confidence interval according to Eq. (16). We emphasize
that such convergence is strong in the sense it holds on a
trial-to-trial basis for all frequencies s = iω, as long as the
network size N is large.

5. Parameters used in Fig. 17

Here, we use the connectivity between 213 cortical and
thalamic areas in the mouse brain [41]. The connection matrix
in this dataset describes the density of axon projections from
one area to another [Fig. 17(a)]. We build a simple dynamic
model by assuming that the node dynamics are identically
determined by the exponential node filter hexp(s) with a time
constant of 100 ms, which is within the 50–350 ms range of
intrinsic time constant used in the literature [49] (α = 1

100 ,
Appendix J 1).

We consider the network transfer function G(s) under two
input patterns: thalamic input and cortical input. Here, we

include the list of areas used (by their abbreviations as defined
in the mouse brain dataset [41]). In the case of thalamic input,
we send input uniformly to 11 sensory thalamic areas: AMd,
AMv, LD, LGd, LP, MD, MGm, MGv, VAL, VPL, VPM.
For cortical input, we send to 17 multimodal or associational
cortical areas that are not primary or secondary sensory or
motor areas: PTLp, FRP, PL, ILA, ORBl, ORBm, ORBvl,
ACAd, ACAv, AId, AIp, AIv, RSPagl, RSPd, RSPv, TEa,
PERI, ECT.

In Fig. 17(b), we plot the magnitude of chain motif cu-
mulants |γ nκn| against the order n. Here, a constant γ raised
to proper power is inserted to set the scale for comparing
motif cumulants across orders. The value of γ is 90% of the
maximum value which satisfies the consistency requirement
that κnγ

n decays to 0 as n → ∞. Note that these cumulants
are computed by treating all nodes as belonging to a single
population; a more complex but more accurate approach
would be to consider subpopulation cumulants, as in Sec. VII.

In Fig. 17(c), the G(s) calculated based on original W is
plotted with red lines. A sequence of blue lines depict succes-
sive (improving) approximations to this response computed
by considering additional motif cumulants, that is, keeping
more terms of κ̃n in Eq. (25). In the inset, the light blue
curves are 100 samples produced by a node-degree preserving
shuffle as explained in Fig. 20. The effect is equivalent to
setting every connection to a strength equal to the mean of
the original log-normal weight distribution (red dashed line),
by keeping only the κ̃1 term in Eq. (25). A coupling strength
is chosen at 90% of the level of the maximum value that keeps
the system stable.
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[20] Y. Susuki, I. Mezić, and T. Hikihara, Coherent swing instability
of power grids, J. Nonlin. Sci. 21, 403 (2011).

[21] Y. Liu, J. Slotine, and A. Barabasi, Controllability of complex
networks, Nature (London) 473, 167 (2011).

[22] K. Ogata, Modern Control Engineering (Prentice Hall, Boston,
2010).

[23] R. Olfati-Saber, A. Fax, and R. M. Murray, Consensus and
cooperation in networked multi-agent systems, Proc. IEEE 95,
215 (2007).

062312-24

https://doi.org/10.1103/PhysRevLett.104.147402
https://doi.org/10.1103/PhysRevLett.104.147402
https://doi.org/10.1103/PhysRevLett.104.147402
https://doi.org/10.1103/PhysRevLett.104.147402
https://doi.org/10.1103/PhysRevLett.105.218701
https://doi.org/10.1103/PhysRevLett.105.218701
https://doi.org/10.1103/PhysRevLett.105.218701
https://doi.org/10.1103/PhysRevLett.105.218701
https://doi.org/10.1103/PhysRevLett.116.010403
https://doi.org/10.1103/PhysRevLett.116.010403
https://doi.org/10.1103/PhysRevLett.116.010403
https://doi.org/10.1103/PhysRevLett.116.010403
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1088/1742-5468/2013/03/P03012
https://doi.org/10.1088/1742-5468/2013/03/P03012
https://doi.org/10.1088/1742-5468/2013/03/P03012
https://doi.org/10.1137/060674909
https://doi.org/10.1137/060674909
https://doi.org/10.1137/060674909
https://doi.org/10.1137/060674909
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1073/pnas.0501426102
https://doi.org/10.1073/pnas.0501426102
https://doi.org/10.1073/pnas.0501426102
https://doi.org/10.1073/pnas.0501426102
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293


FEEDBACK THROUGH GRAPH MOTIFS RELATES … PHYSICAL REVIEW E 98, 062312 (2018)

[24] I. Saboori and K. Khorasani, Consensus Achievement of
Multi-Agent Systems With Directed and Switching Topol-
ogy Networks, IEEE Trans. Autom. Control 59, 3104
(2014).

[25] M. A. Rahimian and V. M. Preciado, Detection and Isolation
of Failures in Directed Networks of LTI Systems, IEEE Trans.
Control Network Syst. 2, 183 (2015).

[26] T. R. Nudell and A. Chakrabortty, Graph-theoretic methods
for measurement-based input localization in large networked
dynamic systems, IEEE Trans. Autom. Control 60, 2114
(2015).

[27] O. C. Imer, S. Yüksel, and T. Başar, Optimal control of LTI
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