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Local paths to global coherence: Cutting networks down to size
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How does connectivity impact network dynamics? We address this question by linking network characteristics
on two scales. On the global scale, we consider the coherence of overall network dynamics. We show that such
global coherence in activity can often be predicted from the local structure of the network. To characterize local
network structure, we use “motif cumulants,” a measure of the deviation of pathway counts from those expected
in a minimal probabilistic network model. We extend previous results in three ways. First, we give acombinatorial
formulation of motif cumulants that relates to the allied concept in probability theory. Second, we show that the
link between global network dynamics and local network architecture is strongly affected by heterogeneity in
network connectivity. However, we introduce a network-partitioning method that recovers a tight relationship
between architecture and dynamics. Third, for a particular set of models, we generalize the underlying theory to
treat dynamical coherence at arbitrary orders (i.e., triplet correlations and beyond). We show that at any order,
only a highly restricted set of motifs impacts dynamical correlations.
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I. INTRODUCTION

From genetics to neuroscience to the social world, net-
works of stochastic dynamical systems are ubiquitous. The
architecture of these networks is complex: irregular but far
from random, with an unexpected prevalence of specific
connection features [1–5]. At the same time, networks pro-
duce complex patterns of collective dynamics [6–8]. Here
we explore the links between these two phenomena and
provide general principles that relate network architecture to
collective dynamics.

The joint activity of pairs and groups of nodes is frequently
described using pairwise [9] and higher-order correlations
(coherence) [10–14]. But what do such measures of coherence
tell us? A high average correlation (across all node pairs)
reflects approximate synchrony. In some settings, this global
synchrony is what matters for how strongly a network
will “cooperate” to influence a system downstream [15–19].
Beyond the impact on downstream targets, synchrony can also
have an impact on how information is encoded in network
activity. This has been widely studied in the neural networks
of sensory pathways, which encode signals from the external
world; here, synchronous fluctuations can either serve as a
separate “channel” or can modulate the amount of information
that network responses can carry by shaping their overall
signal-to-noise ratiocinates [20–25].

We thus turn to the question of relating coherent network
dynamics to connectivity structure as described by a di-
rected graph specifying node interactions. Despite significant
progress [10–12,26,27], this problem remains a challenge. One
approach is to identify the key local connectivity features of a
complex network that predict global levels of correlation—the
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averaged correlation across all nodes in the network. The
local connectivity is characterized using specific pathways
between subsets of nodes, or motifs. Formally, motifs are
particular connectivity patterns (usually smaller graphs) that
occur, possibly multiple times, in the graph of the network.
Several example network motifs are shown in Fig. 1.

How can motif structure be used to predict networkwide
correlation? An approximate expression relating correlations
to the frequency of different types of network motifs has
been derived previously [11,28]. Although this result led
to a number of insights, it is difficult to apply generally
due to the combinatorial explosion of motifs that appears
in the approximation [11,28,29]. It is necessary to measure
empirically the frequencies of many different motifs in order
to apply the theory. In earlier work, we sought to simplify the
situation [29]. We used the frequency of a few, smaller motifs
to predict the frequency of larger motifs in the network. As
a result, we showed that the frequency of a few small motifs
alone could predict networkwide correlation—in many cases
with a high level of accuracy.

However, three key questions remain unanswered. First,
under what conditions can a set of small motifs be used to
accurately infer the frequency of large motifs? Second, what
features of network connectivity, or motifs, predict higher-
order correlations? Third, when our earlier methods fail [29]—
that is, when the frequency of small motifs alone does not
provide accurate information about correlations—is there a
way to still cut the dynamical complexity down to size?

In this paper, we answer these questions. We first summarize
and, where necessary, reinterpret our earlier results [29]
employing combinatorial definitions: Borrowing ideas from
probability theory, we define motif moments and cumulants.
This abstract approach both reveals the probabilistic structure
of our underlying assumptions and allows us to immediately
generalize our theory to link higher-order correlations in
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FIG. 1. (Color online) (a) We consider directed, recurrent net-
works within which motifs of different orders, i.e., number of edges,
are identified. The inset illustrates how these motifs are embedded in
the graph. The different shape and color of nodes become relevant and
are explained in Sec. IV A. (b) Left to right: second-order converging,
chain, and diverging motifs, as highlighted with color in the inset of
(a). Only the latter two contribute to correlations in the path expansion
given by Eq. (4).

network dynamics to graphical features described by
frequencies of more complex motifs. Intriguingly, only a
highly restricted set of motifs enters in expressions for
dynamical correlations of any given order. We explicitly
identify these motifs associated with every order. Finally, we
apply our method to various types of networks, and show that
heterogeneity in network connectivity can lead to a failure of
the predictive approach in [29]. However, even in this case,
an accurate approximation can be obtained if the network
is correctly partitioned and motif frequencies are measured
within and across the partitions.

Our results for coherence at both second and higher orders
hold for stochastic networks where node interactions can be
described using linear response, including linear stochastic
differential equations (Ornstein-Uhlenbeck) and shot noise
processes [30] on networks. Moreover, our findings for second-
(but not higher-)order coherence also hold for coupled point
process systems, including networks of integrate-and-fire
neurons [28] as well as linearly interacting point processes
(Hawkes models [11,31]).

II. STOCHASTIC DYNAMICS ON NETWORKS

A. Model of stochastic dynamics on networks

Stochastic networks of N linearly interacting units can
generally be described using

yi(t) = xi(t) + Ai(t) ∗
∑

j

Wij yj (t). (1)

Here the activity of the ith node, yi(t), is perturbed linearly
from a (stochastic) baseline xi(t) by filtered input (∗ stands for
convolution) from the rest of the network. The response of unit
i is captured by its linear response function Ai(t), and Wij is
the connection strength of the input from unit j to unit i. An
example of such a stochastic system includes the multivariate

Ornstein-Uhlenbeck (OU) process, widely used to model
biological networks [32–35]. We illustrate many of our ideas
using this OU process. Details about how the OU process can
be put into the form of Eq. (1) are in the Appendix, Sec. 1, and
details about our numerical results are in the Appendix, Sec. 3.

For simplicity, we assume that connection weights are
uniform and equal to w, so that W = wW0 for an adjacency
matrix W0. We also assume that the nodes are homogeneous
in their dynamics and response to inputs, so that Ai(t) = A(t),
and xi(t) are independent and identically distributed processes.
These assumptions can be relaxed, as explained in [29].

B. Cross correlation and network motifs

Our goal is to relate network architecture, described
by the matrix W, to coherence in network dynamics. At
second order, coherence is measured by the cross covariance
between the activities of nodes i and j as a function of
time lag τ , (Cy(τ ))ij [9]. As computations are simpler in the
spectral domain, we first consider the cross spectra, Sy(ω) =
E[ ỹỹT ] [36], of the processes [x̃(ω) = F(x(t)) represents
the Fourier transform, z̄ is a complex conjugate, T denotes
a transpose, and bold symbols represent column vectors or
matrices]. Cross spectra and cross covariances are related by
the Wiener-Khinchin theorem, Sy(ω) = F(Cy(τ )) [37].

After a Fourier transformation, the matrix form of Eq. (1)
is

ỹ(ω) = x̃(ω) + Ã(ω)Wỹ(ω). (2)

Here, y and x are column vectors of collections of yi and
xi , respectively. If the spectral radius of Ã(ω)W [denoted by
#(Ã(ω)W); same below] is less than 1, then Eq. (2) implies
ỹ = (I − ÃW)−1x̃, where I is the identity matrix. This leads
to the following relation between the matrix of cross spectra
and autospectra of the isolated (baseline) nodes:

Sy(ω) = (I − ¯̃AW)−1Sx(ω)(I − ÃWT )−1. (3)

This shows how the baseline variability within individual
nodes, Sx(ω) = Sx(ω)I, propagates through the network. An
analog of Eq. (3) holds for networks of integrate-and-fire
neurons and Hawkes processes [28,31].

Equation (3) can be expanded in a series [11,28,29],

Sy(ω)/Sx(ω) =
∞∑

n,m=0

¯̃AnÃmWn(WT )m. (4)

The cross spectra are normalized by Sx(ω) to obtain a
unitless measure of network coherence, which we can use
to approximate the average correlation coefficient (see [29]).

As shown by [11,28], the sum in Eq. (4) represents
contributions to the cross spectrum from paths (i.e., motifs)
within the network. Several second-order motifs are shown in
Fig. 1. For instance, the second-order term ¯̃AÃ(WWT )ij =
w2|Ã|2

∑
k W0

ikW0
jk counts all contributions to the cross

spectrum of nodes i and j due to common input from nodes
k [the rightmost motif in Fig. 1(b)]. In general, (Wn(WT )m)ij
represents the contribution of (n,m) motifs which consist of
two directed chains of length n and m emanating from a single
apex and terminating in nodes i and j , respectively; see Fig. 2.
The same node can be visited multiple times, and the (0,m)
motif is a chain of length m.
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FIG. 2. Illustration of an (n,m) motif.

Figure 3 illustrates such an expansion for two mutually
inhibiting nodes (see also [28]). The cross covariance between
the nodes is shown in Fig. 3(a) with contributions of low-order
motifs in Fig. 3(b). As motif order increases, corresponding
contributions to the cross covariance decrease in magnitude,
but increase in width. The asymmetry of a contribution
increases with the asymmetry of the associated motif, i.e.,
the difference between n and m in an (n,m) motif: Compare
the contributions of the (1,2) and (0,3) motifs. A graphical
decomposition of the circuit into the first few (n,m) motifs is
shown in the inset of Fig. 3(b). Since the network is recurrent,
the expansion in Eq. (4) does not terminate, as a node can
appear multiple times in a motif.

III. MOMENTS, CUMULANTS, AND
NETWORKWIDE COHERENCE

We next relate network coherence and network structure
using motif statistics. For concreteness—but without loss of
generality [11,28]—we consider the total covariance between
pairs of nodes. This is equivalent to evaluating all spectral
quantities at ω = 0, and we indicate this by suppressing
dependences on ω. We measure networkwide coherence using
the average of this total covariance over all pairs of nodes. As
in [11,28,29], if we denote by ⟨X⟩ the empirical average of the
entries of matrix X, we obtain, from Eq. (4),

⟨Sy⟩/Sx =
∞∑

n,m=0

Ãn+m⟨Wn(WT )m⟩

=:
1
N

∞∑

n,m=0

gn+mµn,m where g = NÃw. (5)

FIG. 3. (Color online) (a) The cross-correlation function of two
mutually inhibiting nodes modeled by an Ornstein-Uhlenbeck pro-
cess; inset shows traces of y1(t) and y2(t). (b) Contribution of first-
and third-order motifs to the cross-correlation function in (a). Middle
inset: Diagrammatic expansion of the network showing motifs whose
contributions are given, via the same line and color types, in (b).

Here the motif moment, µn,m = ⟨W0n(W0T )m⟩/Nn+m−1, is
the empirical probability of observing an (n,m) motif in the
network [11,29]. Note that the empirical average is defined
over a particular realization of the adjacency matrix W0. We
define µn,0 = µn, and let µ0,0 = 1. The entire hierarchy of
motif moments, µn,m, needs to be known to evaluate Eq. (5)
exactly. In practice, only a subset of µn,m, up to a certain
order n + m ! kmax, is known and can be used with Eq. (5) to
approximate networkwide covariance.

Truncating Eq. (5) at some order yields an approximation
of average coherence in terms of motif moments up to that
order. However, these approximations can exhibit significant
deviations from the true value [29]. Previously, we introduced
an alternative, “motif resumming approximation” [29], which
provided a series expansion of average coherence in terms of
motif cumulants (defined below) rather than motif moments.
Truncation of the resulting series yielded a significantly
improved approximation of average coherence, given the same
set of motif frequency data.

While we earlier provided a probabilistic interpretation of
this motif cumulant approach, a general framework was miss-
ing [29]. We next provide such a framework by reexamining
the motif cumulants κn,m that first appeared in [29]. We provide
a definition which clarifies the underlying combinatorial
relationship between motif cumulants κn,m and motif moments
µn,m, analogous to that between cumulants and moments of a
random variable. Equipped with this definition, we are able to
express dynamical correlations of all orders in terms of motif
cumulants (Sec. V).

The construction of motif moments from cumulants is based
on a familiar interpretation: estimating the probability of a
joint event from the probability of its constituents. Figure 4(a)
demonstrates this for an example motif. Each term in the
decomposition of this (2,1) diverging motif arises from a
cumulant of smaller or equal order. The first term corresponds
to the probability of the motif occurring in a network with
edges chosen independently, i.e., an Erdös-Rényi network.
Subsequent terms give corrections from excess occurrences of
second- and third-order submotifs. Thus, each motif cumulant,
κn,m, captures “pure” higher-order connectivity statistics. Such
decomposition can also be expressed in combinatorial form.
Let C(n) be the set of all compositions (ordered partitions) of
n. Then,

µn =
∑

{n1,...,nt }∈C(n)

(
t∏

i=1

κni

)

, (6)

µn,m =
∑

{n1, . . . ,nt } ∈ C(n)
{m1, . . . ,ms } ∈ C(m)

(
t∏

i=2

κni

)

(κn1,m1 + κn1κm1 )

×

⎛

⎝
s∏

j=2

κmj

⎞

⎠ . (7)

In evaluating these terms, we set (
∏t

i=2 κni
) = 1 if t = 1.

Expressions (6) and (7) define the full set of κn,m recur-
sively. These are related directly to coherent network dynamics
in the theorem that follows.

032802-3
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FIG. 4. (Color online) (a) The probability of observing the motif
(µ2,1) decomposed in terms of motif cumulants of the graph. (b)
The magnitude of motif cumulants (dashed lines) and moments
(solid lines) for stochastic block networks with N = 1000, p = 0.2.
Clustering in network connectivity increases from darker to lighter
lines [see text for definition of clustering and network structure;
precise values as specified in (c)]. The (n,m) motifs with n " m are
listed first by order n + m then arranged by increasing n within the
motifs of the same order. (c) Approximations of average covariances
using motif moments [Eq. (5)] and cumulants [Eq. (8)] truncated at
order kmax. Crosses indicate exact values obtained from Eq. (3).

Theorem 1. For a network with dynamics defined by Eq. (1),
with W = wW0, the mean coherence (i.e., averaged across all
cell pairs) is given by

⟨Sy⟩
Sx

= 1
N

(

1 −
∞∑

n=1

gnκn

)−2 (

1 +
∞∑

n,m=1

gn+mκn,m

)

, (8)

where g = NÃw. The κn,m here are the motif cumulants,
defined by (6) and (7).

To prove this result, we demonstrate a relation between
the cumulants, κn,m, and the quantities expressed in terms of
matrix products in Eq. (32) of [29]. Equation (8) then follows
immediately from substituting the κn,m into Eq. (32) of [29].
The proof is given in the Appendix, Sec. 4.

In Fig. 4(c), we compare the expressions for network
coherence in terms of motif moments [Eq. (5)] and motif
cumulants [Eq. (8)]. We compute both expansions for three
example networks (whose construction and differences will be
the topic of later sections); for each, we illustrate how motifs
of increasing order contribute to predicted network coherence.

This illustrates a general phenomenon. Truncating Eq. (5)
and keeping only terms with n + m ! kmax approximates the
contributions of these (n,m) motifs to the mean dynamical
coherence in the network. A similar truncation of Eq. (8),
however, approximates coherence in terms of contributions of
paths of all orders. In this latter case, frequencies of motifs
of order exceeding kmax are predicted from the observed
frequencies of motifs of order up to kmax. Figure 4(c) shows
that these predictions are useful: values of correlations based
on cumulants converge more quickly than those derived from
motif moments. The difference can be explained by looking at

the magnitude of the cumulants or moments against the order
[Fig. 4(b)]. Importantly, cumulants decay much faster than
moments in all three cases—hence the increased accuracy of
Eq. (8) over Eq. (5) at a given order.

Figure 4(b) also illustrates that heterogeneity in network
architecture can impact how quickly cumulants and moments
decay, an observation we will revisit. The networks used in
Figs. 4(b) and 4(c) have a variable degree of clustering or
“clumping” in network connectivity—we precisely define our
graph generation rules below. A greater degree of clustering
results in a slower decay of both motif moments and cumulants.
Higher-order statistics are necessary to accurately describe the
structure of such networks. Hence, with more heterogeneity
in connections across a network, the frequency of larger,
more complex graph motifs has a greater impact on network
coherence.

IV. HETEROGENEOUS NETWORKS AND
SUBPOPULATION CUMULANTS

Motif cumulants—via Eq. (8)—provide a way to estimate
global dynamical correlation in terms of local network struc-
ture. As illustrated above, the accuracy of such approximations
depends on the network’s architecture (see Fig. 4). We next
highlight the key impact of heterogeneity or clustering in net-
work connectivity on the approximation. We then introduce a
partitioning approach, and the allied concept of subpopulation
cumulants, which allow us to relate local network structure to
dynamics even in heterogeneous networks.

A. Heterogeneity in network architecture

To study the impact of heterogeneity on the approximation
given by the motif cumulant method, we first consider the
stochastic block network model [38–40] illustrated in Fig. 1.
Such networks are comprised of two subpopulations (or clus-
ters) of size N/2 (indicated by circular and triangular nodes).
Each cluster is associated with a constant si , i = 1,2, and
the connection probability between nodes in subpopulation i
and j is pij = sisj . With fixed overall connection probability
p, the difference between s1 and s2 describes the degree of
clustering in the network. The case s1 = s2 corresponds to an
Erdös-Rényi network (no clustering), while s1 = 2

√
p, s2 = 0

implies that only nodes in the first subpopulation are connected
(extremal clustering).

To illustrate the impact of clustering, we generate three
networks with different values of s1,s2 in Figs. 4(b) and 4(c).
Comparing pairs of curves (moments and cumulants) with
different shades (i.e., different degrees of clustering) reveals
the dependence of motif moments and cumulants on graph
structure. The magnitude of motif moments and cumulants of
a given order increases with clustering [Fig. 4(b)]. Hence, in
clustered, heterogeneous networks, large motifs can strongly
impact dynamical coherence [Fig. 4(c)]. Moreover, network
motifs of increasing order are needed to accurately predict
dynamical correlations as clustering increases.

As a more complex example, we also considered the
Barábasi-Albert model. We find that the behavior of the two
models is similar (Fig. 8 in the Appendix). Such similarity
is consistent with observations reported in the literature [41]
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and underscores the generality of the impact of network
heterogeneity.

These results agree with intuition. Erdös-Rényi networks
have an architecture that is “statistically homogeneous,” as
the probability of each link occurring in the network is the
same. Thus, the most local network statistic—connection
probability—fully determines graph structure and hence the
level of dynamical coherence. Similarly, “nearly Erdös-Rényi”
networks are without significant graphical heterogeneity, and
low-order motif cumulants can accurately predict dynamical
coherence. On the other hand, in highly clustered networks,
the probability of a path between a set of nodes depends
on higher-order connectivity statistics. As a result, the fre-
quency of large motifs cannot be obtained accurately from
the frequencies of smaller ones. In such networks, higher-
order motif statistics have a significant impact on dynamical
coherence.

The necessity of estimating the frequency of higher-order
motifs could limit the applicability of this approach. In many
situations, the full connectivity structure of a network is not
known and global properties of the network are difficult to
estimate. For instance, in the case of biological neuronal
networks, the number of neurons which can be simultaneously
recorded in order to map out their connectivity is often limited
to only a small handful [2,3]. Moreover, many networks
possess additional structure past the simple heterogeneities
discussed above—for instance, neuronal networks may be
composed of both excitatory and inhibitory cells. Accounting

for such natural subdivisions of the graph can lead to more
accurate approximations of dynamical coherence.

B. Subpopulation cumulants

We next show how to subdivide a network to tame the
effects of heterogeneity in architecture and reestablish the link
between local connectivity and global coherence. Subsets of
nodes in graphs can be grouped into classes, or subpopulations,
that share features of dynamics or connectivity. Once a division
is given, we can characterize each subpopulation by its own
motif statistics. These subpopulation motifs are first introduced
in [29] in the context of studying neural networks with two
different types of cells. However, a key difference here is that
division or grouping of nodes may not be given in advance,
but can be obtained (as we will show) from the network
architecture. How the nodes are subdivided can affect the
accuracy of the motif cumulant method, which is a matter
we will address in the next section. First, we extend the
ideas in [29] to the general case of b populations using the
combinatorial definition of motif cumulants introduced in
Sec. III.

For b subpopulations, µn,m becomes a b × b matrix of motif
moments. Entry p,q of this matrix is the empirical probability
of an (n,m) motif with end nodes belonging to populations p
and q, respectively. Let V be the set of all nodes, and Vα, α =
1, . . . ,b, be the set of nodes in population α. We denote the
size of each population by Nα = |Vi |. We then have

(µn,m)p,q =
∑

in,in−1,...,i0=j0,j1,...,jm−1,jm

W0
in,in−1

W0
in−1,in−2

· · · W0
i1,i0

W0
j1,i0

· · · W0
jn,jn−1

/Z

=
∑

in,in−1,...,i0=j0,j1,...,jm−1,jm

W0
in,in−1

W0
in−1,in−2

· · · W0
i1,i0

W0T
i0,j1

· · · W0T
jn−1,jn

/Z

= [⟨(W0)n(W0,T )m⟩B]p,q/N
n+m−1. (9)

In these sums, we assumed that the indices satisfy in ∈ Vp, jm ∈ Vq , and other is<n, jt<m are chosen from V . We also used
the normalization factor Z = Nn+m−1NpNq , while ⟨M⟩B represents the block average of a matrix according to the division of
populations, i.e., (⟨M⟩B)p,q = 1

NpNq

∑
i∈Vp,j∈Vq

Mi,j .
This partition of nodes and motifs into subpopulations is depicted in Fig. 1, where the color of a node indicates its class. Motifs

may involve either nodes of a single class or a combination of the two.
Motif cumulants κn,m are b × b matrices that are defined by recursive relationships similar to Eqs. (6) and (7):

µn =
∑

{n1, . . . ,nt } ∈ C(n)

[(
t∏

i=2

κni
E

)

κn1

]

, (10)

µn,m =
∑

{n1, . . . ,nt } ∈ C(n)
{m1, . . . ,ms } ∈ C(m)

(
t∏

i=2

κni
E

)
(
κn1,m1 + κn1 EκT

m1

)
⎛

⎝
s∏

j=2

EκT
mj

⎞

⎠ . (11)

Here E = diag{N1/N, . . . ,Nb/N} is inserted between each
motif cumulant matrix multiplication and yields the appro-
priate weighted sums for the interpretation of the terms
µn,m and κn,m as probabilities. Specifically, scaling by E
is multiplication by the probability of selecting nodes from
respective populations at “breaks” in the motifs.

How should these population-specific motif cumulants be
combined to estimate the average correlation? An extension of

Eq. (8) was developed for two populations in [29], and stated
in terms of matrix products. This generalizes immediately to
the case of an arbitrary number of populations, b, and—as in
Theorem 1 above—can be restated in terms of (matrix-valued)
motif cumulants. The result is the following:

Corollary 1. Let ⟨Sy⟩B represent a blockwise average over
entries corresponding to each subpopulation. For a network
with dynamics defined by Eq. (1) with W = wW0, the
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generalization of Eq. (8) to subpopulation motif cumulants
is [29]

⟨Sy⟩B/Sx := DUT SyUD/Sx

= 1
N

(

I −
∞∑

n=1

gnκnE

)−1(

E−1 +
∞∑

n,m=1

gn+mκn,m

)

×
(

I −
∞∑

m=1

gmEκT
m

)−1

, (12)

where D = diag{1/
√

N1, . . . ,1/
√

Nb}, U is the
N × k matrix given by U = [u1| · · · |uk], and
ui = (0, . . . ,0,1, . . . ,1,0 . . . ,0)T /

√
Ni is the vector where

the nonzero entries appear only at indices that match one of
the nodes in the given subpopulation, normalized to unit L2
norm. The κn,m here are the subpopulation motif cumulants,
defined in Eqs. (10) and (11).

The arguments necessary to establish this corollary are
given in the Appendix, Sec. 6.

In Fig. 5(a), we use stochastic block model networks to
demonstrate the subpopulation motif approach. The structure
of such networks is defined using two groups of nodes with
different connectivity. We group nodes accordingly into two
populations and apply the subpopulation cumulant formula
given by Eq. (12). The resulting approximation of average
correlations is a significant improvement over that obtained
using a single population: First-order motif cumulants alone
perfectly predict average correlations, whereas we require
motifs of order up to four or five orders for the same networks
if we use a single population approach [Fig. 4(b)].

Importantly, the subpopulation approach also works when
there is no obvious way to group the nodes. As an example,
consider the highly heterogeneous Barábasi-Albert networks.
If we order nodes by degree, two subpopulations can be
formed from nodes with degrees above and below a given
threshold. Figure 5(b) shows that this approach substantially
simplifies the link between network structure and dynamics:
if the subpopulations are chosen optimally, covariance in the
network dynamics can be accurately predicted using motifs of

FIG. 5. Approximations of average covariances using the sub-
population cumulant approach, truncating at order kmax. Crosses
indicate exact values obtained from Eq. (3). (a) Stochastic block
model networks of Fig. 4 (same color scheme) divided into two
subpopulations—first-order motif cumulants now provide a complete
description of the network structure; (b) Barábasi-Albert network
divided into two subpopulations according to whether the sum of
the in and out degrees of each node lies above or below different
thresholds [inset shows cut-off degree ranks (descending)].

only order two, while motifs up to order four or five are needed
otherwise.

C. How to partition a network and why it works

In [29], we provided an intuitive explanation of why motif
cumulants provide a better approximation of networkwide co-
variance [Eq. (8)] than motif moments [Eq. (5)]. In this section,
we extend this argument to heterogeneous architectures. In
doing so, we will reveal why network partitioning can work
so well, describe a rule of thumb, and apply it to a general
network.

First, we review the arguments in [29] for statistically
homogeneous (e.g., Erdös-Rényi) networks. The argument
was based on studying the spectral radii #(W0) and #(W0"),
where " = I − uuT and u = (1, . . . ,1)T /

√
N . Using the

matrix expression of motif statistics [see Appendix, Eqs. (A2)–
(A4)], it is straightforward to see that those spectral radii
are related to the asymptotic rate of decay of the moments,
µn,m, [11] and cumulants, κn,m, respectively.

The faster decay of cumulants compared to moments is
therefore reflected by #(W0") being much smaller than
#(W0). This is indeed the case for networks with sufficiently
“homogeneous” connectivity [29] (cf. [11]): For Erdös-Rényi
networks, the spectrum of W0 is characterized by a bulk part
with many eigenvalues distributed over a region near 0 in the
complex plane, and one single positive eigenvalue with much
larger magnitude. This latter eigenvalue determines #(W0)
(from the Perron-Frobenius (PF) theorem [42]; cf. [43])
and therefore the rate of decay of the moments µn,m. To
study #(W0"), and therefore the rate of decay of the motif
cumulants, we first define the “PF vector” as the eigenvector
associated with the outlying eigenvalue of W0 in an arbitrary
network. For sufficiently homogeneous networks such as
Erdös-Rényi networks, the PF vector is close to u as a reflection
of the underlying homogeneity. Note that multiplication by "
essentially removes the eigenvalue associated to this vector
from the spectrum of W0", since W0"u = W00 = 0. This
leads to the significant reduction of #(W0") compared to
#(W0).

To extend such intuition to heterogeneous networks, we
need to answer two questions: First, what is the PF vector
for heterogeneous networks? Second, how does dividing a
network into subpopulations change the counterpart of " and
the resulting spectrum?

We first observe that for many networks, the PF vector is
approximately the (in)-degree list, denoted by d (normalized
to unit L2 norm). In particular, we have found numerically
that this is the case for stochastic block models and the
Barábasi-Albert networks we consider (see Fig. 11 in the
Appendix). We will use this observation about the PF vector to
make intuitive arguments below, but first pause to make some
general, heuristic comments as to its possible justification.
We begin by referring back to the case of Erdös-Rényi
networks, where the PF vector is approximately proportional
to the homogeneous vector u as stated above; and for large
matrices, u will also be approximately proportional to the
degree vector d with small (relative) error. Now, looking
at the ensemble average E{W0} ∝ uuT , we observe that u
is the (exact) PF vector for this average matrix uuT . Thus,
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the PF vector for the ensemble average and for realizations
of the adjacency matrices agree—although this relies on the
probabilistic structure of the underlying random matrices in a
much more complicated way than we attempt to describe. Next,
for a more general graph model, consider an adjacency matrix
with an ensemble average that can be written in rank-one
form: E{W0} = abT (where a,b are column vectors with
non-negative entries). The PF vector for E{W0} is a; moreover,
this is once again proportional to the (average) in-degree list.
An analogy with the Erdös-Rényi case suggests a possible
reason as to why the PF vector for individual adjacency
matrices W0 is also found to be approximately proportional to
d—although this argument is not rigorous.

We now discuss how to use the fact that the PF vector
∝ d to best partition a network into subpopulations. Recall
that the subpopulation theory can be viewed as formally
substituting the scalar motif moment and cumulant quantities
in the original theory with b × b matrices [Eqs. (10)–(12)].
In [29], we showed that the matrix expressions for κn,m and
µn,m are given by Eqs. (A2)–(A4), where repetitive factors
such as W0"B appear in places of W0". Here, "B is a block
diagonal generalization of " for the subpopulation approach.
In particular,

"B =

⎛

⎜⎝
"1

. . .
"b

⎞

⎟⎠ , (13)

where each diagonal block corresponds to a subpopulation.
Here, "i = INi

− uNi
uT

Ni
(where uNi

= (1, . . . ,1)T /
√

Ni) is
an “original” " matrix, simply defined with population size
Ni .

Combining the above observations, we look for a partition
of the network that will bring W0"Bd as close to 0 as possible.
First, consider the stochastic block model. Note that the "B

we defined above will map to 0 any vector that is piecewise
constant over the indices of each subpopulation. Therefore,
if we choose the network partition naturally provided by
the stochastic blocks themselves, we obtain W0"Bd = 0.
As expected, this partitioning results in very rapid decay of
motif cumulants, and hence an ability to predict network
coherence using only low-order motif statistics [here, order
1; see Fig. 5(a)].

For the Barábasi-Albert network, there are no “natural”
subpopulations, but partitioning still leads to a significant
improvement in predictions of network coherence. In this case,
continue to divide the network into just two subpopulations
[Fig. 5(b)]. The goal is to perform this division so that it will
minimize ∥W0"Bd∥2. In practice, we instead consider the
simpler question of minimizing ∥"Bd∥2 as an approximation.
As noted above, ∥"Bd∥2 measures the error of a piecewise
constant (over the indices of subpopulations) approximation
of d. In Fig. 6, we plot this error against a threshold parameter

FIG. 6. L2 norm of the difference between the degree list
(normalized) and the piecewise constant vector (see text) given by
a certain cut-off ranking of the degrees. Curves with different shades
are four realizations of Barábasi-Albert networks (with the same
parameters). The legend is the cut-off degree ranking that achieves
the minimum of difference.

in node degree that is chosen to partition the network; this
shows that the error is minimized at a cut-off degree ranking
of roughly 30–40 (across different random realizations of
a Barábasi-Albert network with the same parameters). As
expected from our heuristic arguments, this value is close to the
value of the threshold that gave the most rapid convergence of
the cumulant-based estimates of network covariance (degree
ranking = 50; Fig. 6).

Up to this point, we have defined motif cumulants and
shown how they can be used to make accurate predictions
of coherence in average network activity. These were results
about second-order correlations (i.e., covariances) averaged
across node pairs. We next extend the theory of motif
cumulants to correlations of arbitrary order.

V. HIGHER-ORDER CORRELATIONS

Here we show how to generalize our theory to relate higher-
order statistics of a network’s dynamics to its architecture.
While the second-order results above can be used for both
finite-valued stochastic systems (i.e., OU and jump processes)
and coupled point processes, the higher-order results are only
valid in their present form for finite-valued stochastic systems
(not point processes with δ function pulses). Extensions to
higher-order coherence for interacting point processes are
nontrivial and will be tackled elsewhere.

The kth-order cross-covariance function for the processes in
Eq. (1) are defined using joint cumulants of random variables,

Ci1i2···ik
y[k] (τ1, . . . ,τk−1)

:= κ(yi1 (t),yi2 (t + τ1), . . . ,yik (t + τk−1)). (14)

A generalization of the Wiener-Khinchin theorem relates
the Fourier transform of the higher-order cumulant to the
polyspectra Si1i2···ik

y[k] [44] defined via the Fourier transform of
the processes:

F
(
Ci1i2···ik

y[k]

)
= Si1i2···ik

y[k] = κ( ¯̃yi1 (ω1 + , . . . , + ωk−1),ỹi2 (ω1), . . . ,ỹik (ωk−1))

:= lim
T →∞

1
T

∑

χ

(|χ | − 1)!(−1)|χ |−1
∏

B∈χ

E

⎧
⎨

⎩
∏

j∈B

ỹij (ωj−1)

⎫
⎬

⎭ δ

⎛

⎝
∑

j∈B

ωj

⎞

⎠ . (15)
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Here, ω0 = −
∑k−1

j=1 ωj , ỹij (ω) =
∫ T

0 dte−2π iωt (yij (t) −
E[yij (t)]), and δ(z) = 1 when z = 0 and δ(z) = 0 otherwise.
The first sum is over all partitions χ of set{1, . . . ,k}, and B,
as an element of χ , is a subset of {1, . . . ,k}; |χ | is the number
of partitions in χ . To illustrate this formula, we first note that
at third order, it reduces exactly to the “bispectrum” [44–46]

F
(
Ci1i2i3

y[3] (τ1,τ2)
)

= Si1i2i3
y[3] (ω1,ω2)

:= E
[

¯̃yi1 (ω1 + ω2)ỹi2 (ω1)ỹi3 (ω2)
]
.

It is easy to see that Eq. (15) is multilinear in the variables
ỹij . Using Eq. (2), we can therefore generalize Eq. (3) to obtain
the polyspectra of the processes y in terms of that for x via the
propagation matrix P̃ = (I − ÃW)−1:

Si1i2···ik
y[k] (ω1, . . . ,ωk−1)

=
∑

j1,··· ,jk

P̃i1j1 (ω0)P̃i2j2 (ω1) · · · P̃ikjk
(ωk−1)Sj1j2···jk

x[k]

× (ω1, . . . ,ωk−1). (16)

For example, replacing Gaussian white noise which appeared
in the OU process with “Poisson kicks”, i.e., considering a
shot noise process, yields nonzero Sx[3].

Next, expanding P̃ =
∑∞

n=0(ÃW)n in Eq. (16) leads to an
expression for polyspectra analogous to Eq. (5):

⟨Sy[k]⟩/Sx[k] = 1
Nk−1

∞∑

n1,...,nk=0

g|n|µn1,...,nk
, (17)

where |n| =
∑k

i=1 ni and g = NÃw as defined
in Eq. (5). The motif moments µn1,...,nk

=∑
i1,...,ik ,j

(W0n1 )i1j · · · (W0nk )ikj /N
|n|+1. For simplicity,

in the formula above, we again set ω1 = · · · = ωk−1 = 0,
and assume homogeneous dynamics for each node. Here,
Si1i2···ik

x[k] = Sx[k]δ
i1i2···ik is a diagonal tensor, since the {xi}

comprise an uncoupled and uncorrelated network.
The most interesting aspect of Eq. (17) is the motif moments

µn1,...,nk
. For dynamical coherence (and hence polyspectra) of

order k, these motif moments are the frequencies of k-branch
motifs with nj nodes on each branch. Figure 7(a) illustrates
such a motif µ1,1,1, for k = 3 branches and nj ≡ 1 node on
each branch. Importantly, these k-branch motifs are the only
ones that appear at each order in the series of Eq. (17).

We note that higher-order correlations for more general
cases, such as variable connection weights, heterogeneity in
node dynamics, and common input can be treated similarly,
using techniques in [29].

Thus far, we have shown via Eq. (17) how network
motifs—quantified by the motif moments µn1,...,nk

—contribute
to higher-order dynamical correlations. The solid lines in
Fig. 7(b) show that the motif moments can decay slowly. The
consequence is that motifs of high order (up to 10 or beyond)
may be needed for a good approximation of third-order
correlations [Fig. 7(c), solid lines].

It is therefore natural to ask whether the motif cumulant
approach can be extended to higher order, and help approx-
imate finer measures of coherence using information about
only a few lower-order motifs. Although the main ideas are
similar to those at second order, derivations at higher order are

FIG. 7. (Color online) (a) Cumulant decomposition of a three-
branch motif. Panels (b) and (c) are counterparts of Fig. 4(b) and 4(c)
for three-branch motifs and bispectra: (b) decay of motif moments
and cumulants with respect to order and (c) convergence estimated
third-order correlations by two approaches. In (b), the (n,m,l) motifs
are again increasingly ordered according to the order n + m + l.
Because of symmetry, only motifs with n " m " l are listed. Within
each order, motifs are arranged by lexicographical order of n, m, and
l, except that motifs with l ̸= 0 are listed first.

more cumbersome. We note that a significant simplification is
offered by the use of our combinatorial formulation of motif
cumulants (Sec. III).

First, we define multibranch motif cumulants via their
relationship with motif moments. Specifically, we relate the
motif moments {µ∗} and motif cumulants {κ∗} (∗ stands for
multiple indices; see below) via a combinatorial expression.
This expression corresponds to the decomposition shown in
Fig. 7(a) [cf. Fig. 4(a)], where we have decomposed a k-branch
motif into motifs with k and fewer branches.

We next enumerate all possible ways of decomposing the
k-branch motif explicitly. Just as in Eqs. (6) and (7), this is
done according to how a k-branch motif is partitioned at the
“root” of the branches [the sum over χ in Eq. (18)]. In other
words, we examine which k branches are grouped together
as one component in the decomposition. To see what this
means, examine the coloring in Fig. 7(a): for different terms
in the decomposition, the components that are shaded with
the seam color have been grouped together. The remaining
enumeration is about how each branch breaks up [into chains
κBi

j
, corresponding to the sum over πi in Eq. (18)],

µn1,...,nk
=

∑

π1,...,πk

⎛

⎝
k∏

i=1

ti∏

j=2

κBi
j

⎞

⎠

⎛

⎝
∑

χ

∏

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1

⎞

⎠ .

(18)

Here, πi = {Bi
1, . . . ,B

i
ti
} is an ordered partition of ni , χ is a

partition of the set {1, . . . ,k}, and {i1, . . . ,is} is one subset of
indices that are grouped according to the partition χ .

To generalize Eq. (8), we use the following analog of Prop.
4.1 in [29].

032802-8



LOCAL PATHS TO GLOBAL COHERENCE: CUTTING . . . PHYSICAL REVIEW E 89, 032802 (2014)

Theorem 2. For a pair of motif moments and cumulants
{µ∗} and {κ∗} with up to k branches,

∞∑

n1,...,nk=0

µn1,...,nk

=
(

1 −
∞∑

n=1

κn

)−k

×
[
∑

π

f (π )
∏

B∈π,B>1

( ∞∑

n1,...,nB=1

κn1,...,nB

)]

, (19)

assuming all series converge absolutely and |
∑∞

n=1 κn| < 1.
The sum with index π is through all partitions of k. When
indices for the product are empty, we take the corresponding
terms to be 1. The Faà di Bruno coefficient,

f (π ) =
(

∑

B∈π

B

)

!

(
∏

B∈π

B!

)−1 (
∏

B∈π

#B!

)−1

, (20)

is the number of partitions of set {1, . . . ,k} that correspond to
a partition π of integer k. Here, ν is the set of unique B’s in
π , and for every B ∈ ν, #B is the number of repetitions of B
in π .

We provide a proof of Theorem 2 in the Appendix, Sec. 5,
using the combinatorial relation given by Eq. (18). We note
that the proof itself is different from the matrix-based method
used in [29] to obtain the second-order correlation result.
Moreover, this approach can be easily generalized to the case
of subpopulations (see below and the Appendix, Sec. 6).

To establish an expression for average higher-order corre-
lations, first note that Eq. (18) is “homogeneous in degree,” so
that if it is satisfied for a pair of motif moments and cumulants
{µ∗}, {κ∗}, it will also be satisfied for scaled pairs {g|∗|µ∗},
{g|∗|κ∗}. Thus, the same relationship holds for scaled motif
statistics. Applying Theorem 2 to Eq. (17), using scaled motif
statistics, we obtain

⟨Sy[k]⟩
Sx[k]

= 1
Nk−1

(

1 −
∞∑

n=1

gnκn

)−k

×
[
∑

π

f (π )
∏

B∈π,B>1

( ∞∑

n1,...,nB=1

g|n|κn1,...,nB

)]

.

(21)

As an example, the motif cumulant expansion of the average
third-order correlation is

⟨Sy[3]⟩
Sx[3]

= 1
N2

(

1 −
∞∑

n=1

gnκn

)−3

×
(

1 + 3
∞∑

l,m=1

gl+mκ l,m +
∞∑

l,m,n=1

gl+m+nκ l,m,n

)

.

(22)

Figures 7(b) and 7(c) are counterparts of Figs. 4(b)
and 4(c) that numerically compare motif moment and cu-
mulant approaches for stochastic block networks. They show
numerically that our observations for pairwise correlations

generalize to higher orders (see also Fig. 9 in the Appendix
for an application to the Barábasi-Albert network). First, we
show that higher-order correlations can depend on long paths
through the network (motif moments, solid lines). Second,
when predicting average correlation using motif statistics
up to a given order, an approximation in terms of motif
cumulants is more accurate than one in terms of motif
moments [Fig. 7(c)]. Third, the order of motif statistics needed
to approximate correlations again increases with network
homogeneity (compare lines of different shade).

Finally, the subpopulation approach generalizes to higher
order. The resulting general formula is given in Corollary 2 and
derived in the Appendix, Sec. 7. Moreover, this result offers
similar advantages in predicting correlations from lower-order
motif cumulants (see the Appendix, Sec. 6, and Fig. 10).

VI. CONCLUSION

Network motifs have been used previously to link lo-
cal network connectivity and global coherence in networks
with linearly interacting components [11,28,29]. Here, we
developed this theory in order to make it both more general
and more broadly applicable. We first showed that a motif-
based approach introduced in prior work has a probabilistic
interpretation in terms of quantities closely related to key
statistical concepts. We refer to these as motif cumulants.

Next, we showed that the link between network architecture
and dynamical correlation—through motif cumulants—can be
complex in clustered and heterogeneous networks. This com-
plexity can result in the apparently irreducible contribution of
long paths to networkwide coherence. However, the motif cu-
mulant approach can be extended to reduce this complexity—
and hence the size and number of the network features
that must be sampled empirically—substantially. Finally, we
showed how the theory naturally extends to higher-order
dynamical correlations for a broad subset of the dynamical
models under study. This provides a direct link between local
network architecture and global dynamics at every order.

An important feature of our approach for experimental
settings is that the prevalence of only a limited number of
motifs is needed in order to predict networkwide dynamical
coherence. Moreover, these motifs are small, involving only
a few nodes at a time. This property could provide a way
forward in experimental settings—as in studies of networks
of genes [47] or neurons [2,3]—in which networks are
quantified by sampling a limited number of edges measured
simultaneously. The resulting motif prevalences are precisely
the quantities needed to define the motif cumulants that are at
the core of our approach.

The present results suggest many opportunities for future
research. At the top of the list is extending the connection
between network motifs and higher-order dynamical corre-
lations to apply to coupled point process models. Somewhat
surprisingly, we have found both numerically and analytically
(in special cases) that the linear response approach [Eq. (16)]
that extends to all orders for finite-valued stochastic processes
fails to extend beyond second order for coupled point process
models, where each node generates “spike” events (data
not shown). Future research will explore modifications of
the linear response approach that may reestablish a useful
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description of higher-order correlations for these network
models. This would open the door to studies of plasticity
and learning of network connections in neural systems, where
interactions are governed by spike times [48].

We close by mentioning two further extensions of special
interest. The first concerns applications to stimulus-encoding
networks. Such networks can be heterogeneous and composed
of groups of nodes, each with different connectivity rules and,
importantly, responding differently to an external stimulus.
Networks with spatial structure provide a natural way in which
such connectivity and responses might develop. For such a
network, our subpopulation motif approach could predict the
levels of dynamical coherence within and between each group
of nodes. From here, decoding techniques could quantify
the level of information that the neural groups carry about
the stimulus itself, and how this depends on the correlation
structure induced by different network motifs [20–25,49,50].

A final open problem concerns the invertibility of the
architecture-to-dynamics question considered here. Given
measurements of networkwide coherence, what can we con-
clude about network architecture? The network motif approach
can narrow the possibilities, especially when higher-order
correlations are considered, but we do not yet know what
additional assumptions are required to yield a unique solution.
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APPENDIX

1. Relating the Ornstein-Uhlenbeck model to
Eq. (1) of the main text

We used a simplified form of the canonical Ornstein-
Uhlenbeck (OU) model in all examples where we consider
second-order statistical quantities. This model is related to
Eq. (1) in the main text by writing the dynamics

ẏ = −#y(t) + Wy(t) + ξ (t), (A1)

where y(t) = [y1(t), . . . ,yN (t)]T . The diagonal matrix # =
τ−1I sets the intrinsic time scale of the nodes, and the column
vector ξ (t) is composed of independent white noise processes.
Equation (A1) above is then equivalent to Eq. (1) of the
main text with Ai(t) = A(t) = e−t/τ*(t). Upon coupling, the
baseline activity of a node in the network, xi(t) = (A ∗ ξ )(t), is
perturbed by filtered input from other nodes, A ∗

∑
j Wij yj (t).

2. Further examples

Here we provide details of several computational findings
referred to in the main text. Each addresses the generality
and applicability of our results. First, Fig. 8 shows that our
main results contrasting motif moments and cumulants hold for
the Barábasi-Albert network model, which has a significantly

FIG. 8. Same as Figs. 4(b) and 4(c) of the main text but for
the Barábasi-Albert model. (a) The magnitude of motif cumulants
(dashed lines) and moments (solid lines) for a Barábasi-Albert model
network. Motifs (n,m),n " m are grouped first by n + m and then
arranged by increasing n. (b) Approximations of average covariances
using motif moments [truncating Eq. (5), solid lines] and cumulants
[truncating Eq. (8), dashed lines] up to order kmax. Exact values
[direct evaluation of Eq. (3)] are labeled by crosses: a Barábasi-Albert
network of size 1000 and connection probability 0.01.

more complex structure than the stochastic block models
studied in Fig. 4 of the main text.

Next, Figs. 9 and 10 present analogous results for third-
order correlations in network output. Specifically, Fig. 9 shows
that these third-order correlations depend significantly on the
details of the underlying graph structure (i.e., the degree
of clustering). Moreover, this dependence can be efficiently
predicted via motif cumulants. Figure 10 demonstrates that the
subpopulation approaches continue to enhance the accuracy
of our predictions—if the populations are correctly defined,
levels of triplet correlations can be predicted from lower-order
motifs.

Figure 11 provides numerical evidence for our claim that
the PF vector for a general class of networks is closely
approximated by the degree list (see Sec. IV C).

3. Details of numerical results

Here we provide a detailed description of the computational
examples in the main text and the Appendix. This includes all
parameters describing the dynamics of nodes and connections,
and our methods of generating random networks.

FIG. 9. Same plot as Fig. 8(b) but for average third-order correla-
tions ⟨Sy[3]⟩/Sx[3]. Approximations using motif moments (solid lines)
and cumulants (dashed lines) up to order kmax for a Barábasi-Albert
network of size 1000 and connection probability 0.01.
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FIG. 10. Same plots as Fig. 5 of the main text but for average
third-order correlations ⟨Sy[3]⟩/Sx[3]. Approximations using the sub-
population cumulant approach by truncating at order kmax, with the
exact values [direct evaluation of Eq. (16) of the main text] labeled
by crosses: (a) stochastic block model networks of Fig. 4 of the main
text (the colors are the same) divided into two subpopulations with
differing connectivities; (b) the Barábasi-Albert network of Fig. 8
divided into two subpopulations according to different thresholds on
the sum of the in and out degrees (different colors; see also the inset,
which displays the cutoffs).

In Fig. 3 of the main text, we calculated correlations for
an OU system [see Eq. (A1) of the main text] with τ = 1, ξ
having unit intensity, and

W =
[

0 −0.75
−0.75 0

]
.

In plots of approximations of average second- and third-
order covariances, i.e., Figs. 4(b), 5(a) and 5(b) of the main
text, as well as Figs. 8(b), 9, 10(a), and 10(b), the parameters
Ã and w are chosen so that NÃwp = 0.4. Note that the choice
of Sx (respectively, Sx[3] at third order) will not affect the
normalized quantity ⟨Sy⟩/Sx (respectively, ⟨Sy[3]⟩/Sx[3]), and
can be set to 1.

The Barábasi-Albert networks in Fig. 5(b), and Figs. 8(a),
8(b), 9, and 10(b), are generated by a directed Barábasi-Albert
model similar to that in [41]. One starts with a “core” of Np
nodes, randomly connected with connection probability 0.5.
After that, N − Np nodes are added to the graph. When adding
a new node i + 1, it will form exactly Np connections with
the existing nodes 1, . . . ,i. Those connections are distributed
among existing nodes according to probabilities that are
proportional to the sum of the in and out degree of each node.
The direction of the connection, whether into node i + 1 or

out of node i + 1, is chosen independently with probability
0.5. The code implementing this algorithm is available upon
request.

4. Explicit expressions for motif cumulants

Here, we will prove that the following matrix expressions
for κn and κn,m introduced in [29] are equivalent to the
recursive definition in Eqs. (6) and (7) of the main text:

κn = 1
Nn+1

∑

i,j

(W0"W0 · · ·"W0
︸ ︷︷ ︸

n factors of W0

)ij

= 1
Nn

uT [(W")n−1 W]u

= 1
Nn

uT Wθ
nu, (A2)

κn,m = 1
Nn+m+1

×
∑

i,j

(W0"W0 · · · "W0
︸ ︷︷ ︸

n factors of W0

" W0T "W0T · · ·"W0T
︸ ︷︷ ︸

m factors of W0T

)ij

= 1
Nn+m

uT [(W")n−1 W"WT ("WT )m−1]u

= 1
Nn+m

uT Wθ
n"Wθ

mu, (A3)

where

Wθ
n = [W0"]n−1W0

and u = (1, . . . ,1)T /
√

N , H = uuT , and " = I − H.
We see that W0", "WT are recurring factors in κn

and κn,m. Using the relation of spectral radius and matrix
norm [11], one can show that the asymptotic decay speed
of κ∗ is determined by the spectral radii of these factors.
Interestingly, it is easy to show that #(W0") = #("W0") =
#(*W0), and hence these spectral radii coincide. A similar
argument relates the decay of µ∗ with #(W0) [Eq. (A4)].

We prove only that Eq. (A3) holds, since a nearly identical,
but simpler, proof verifies Eq. (A2). First, recalling that
µn,m = ⟨W0n(W0m)T ⟩/Nn+m−1, it is straightforward to show

FIG. 11. Comparing the PF vector (gray) and the in-degree list (black) for (a) a stochastic block network and (b) a Barábasi-Albert network.
The vectors are normalized to have unit L2 norm and plotted by the indices of nodes, which are ordered in descending in-degree. The stochastic
block network has s1 = 1.44

√
0.2 and is the same one as in Figs. 4(b) and 4(c). The Barábasi-Albert network is the same one as in Fig. 5(b).
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that

µn,m = 1
Nn+m

uT (W0)n(W0T )mu. (A4)

Substituting I = " + H between every subsequent appear-
ance of the adjacency matrix W0 gives

µn,m = 1
Nn+m

uT [W0(" + H)]n−1W0(" + H)W0T

× [(" + H) W0T ]m−1u. (A5)

By expanding across all sums of " + H except the central
one (between the terms W0,W0T ), and noting that there

is an obvious bijection between a pair of compositions of
the integers n and m, i.e., {n1, . . . ,nt } ∈ C(n),{m1, . . . ,ms} ∈
C(m), and a term of the form

[
t−1∏

i=1

(
Wθ

ni
H

)
]

[
Wθ

nt
(" + H)Wθ

ms

]
⎡

⎣
s−1∏

j=1

(
HWθ

mj

)
⎤

⎦ ,

we may write (using H = uuT )

µn,m = 1
Nn+m

uT

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

{n1, . . . ,nt } ∈ C(n)
{m1, . . . ,ms } ∈ C(m)

[
t−1∏

i=1

(
Wθ

ni
H

)
]

[
Wθ

nt
(" + H)Wθ

ms
u
]
⎡

⎣
s−1∏

j=1

(
HWθ

mj

)
⎤

⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
u

= 1
Nn+m

∑

{n1, . . . ,nt } ∈ C(n)
{m1, . . . ,ms } ∈ C(m)

[
t−1∏

i=1

(
uT Wθ

ni
u
)
]

[
uT Wθ

nt
(" + uuT )Wθ

ms
u
]
⎡

⎣
s−1∏

j=1

(
uT Wθ

mj
u
)
⎤

⎦

=
∑

{n1, . . . ,nt } ∈ C(n)
{m1, . . . ,ms } ∈ C(m)

[
t−1∏

i=1

(
1

Nni
uT Wθ

ni
u
)] [

1
Nnt+ms

uT Wθ
nt

(" + uuT )Wθ
ms

u
]

×

⎡

⎣
s−1∏

j=1

(
1

Nmj
uT Wθ

mj
u
)⎤

⎦ . (A6)

If t = 1, we define the product [
∏t−1

i=1(Wθ
ni

H)] = I.
We now prove Eq. (A3) by induction, assuming Eq. (A2)

holds. First, when n = m = 1, the only compositions are trivial
(i.e., π1 = π2 = {1}). Equating in this case the right-hand sides
of Eq. (7) of the main text and Eq. (A6) gives

κ1,1 + (κ1)2 = 1
N2

uT Wθ
1"Wθ

1u +
(

1
N

uT Wθ
1u

)2

.

Since Eq. (A2) for n = 1 gives

κ1 = 1
N

uT Wθ
1u,

we have that Eq. (A3) holds for n = m = 1. Next, assume
Eq. (A3) is true for all (p,q) such that p ! n and q < m, or
p < n and q ! m. That is, in these cases,

κp = 1
Np

uT Wθ
pu [by Eq. (A2)] and

κp,q = 1
Np+q

uT Wθ
p"Wθ

qu.

Making the corresponding substitutions in Eq. (A6), the
only terms we have not accounted for in matching the right-
hand side of Eq. (A6) to that of Eq. (7) of the main text are
the terms corresponding to the pair of compositions {n},{m}.

In Eq. (7) of the main text, the corresponding terms are

κn,m + κnκm, (A7)

while in Eq. (A6), the terms take the form

1
Nn+m

uT Wθ
n(" + uuT )Wθ

mu

= 1
Nn+m

uT Wθ
n"Wθ

mu +
(

1
Nn

uT Wθ
nu

) (
1

Nm
uT Wθ

mu
)

= 1
Nn+m

uT Wθ
n"Wθ

mu + κnκm, (A8)

where the second equality follows from the inductive assump-
tion. Comparing Eqs. (A7) and (A8) gives

κn,m = 1
Nn+m

uT Wθ
n"Wθ

mu,

which is exactly Eq. (A3), completing the inductive proof.

5. Proof of the theorem on multibranch motifs

Proof of Theorem 2. First, we rewrite the left-hand side
(LHS) of Eq. (19) to explicitly account for cases with different
nj nonzero. Specifically, we sum over all possible sets of k !
k′ indices {j1, . . . ,jk} corresponding to the nonzero values of
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nj :

∞∑

n1,...,nk′ =0

µn1,...,nk′ =
∑

{j1, . . . ,jk}
⊂ {1, . . . ,k′}

∞∑

nj1 ,...,njk
=1

µnj1 ,...,njk
. (A9)

We now focus on a fixed k, and without loss of generality,
let {j1, . . . ,jk} = {1, . . . ,k}. Applying Eq. (18), we have

∞∑

n1,...,nk=1

µn1,...,nk

=
∞∑

n1,...,nk=1

∑

π1,...,πk

⎛

⎝
k∏

i=1

ti∏

j=2

κBi
j

⎞

⎠

⎛

⎝
∑

χ

∏

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1

⎞

⎠

=
∑

χ

∞∑

B
i1
1 ,...,B

is
1 "1

∏

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1

×

⎡

⎣
∞∑

n1,...,nk

∑

π1,...,πk

⎛

⎝
k∏

i=1

ti∏

j=2

κBi
j

⎞

⎠

⎤

⎦ .

In the last equality, we switched the order of summations by
pulling the sum over χ to the front. Consequently, for each
fixed {Bi1

1 , . . . ,B
is
1 } taken in an outer sum, the {πi} and {ni}

are restricted to terms that are possible for that {Bi1
1 , . . . ,B

is
1 }.

Notice that these sums can be factorized as

∞∑

n1,...,nk

∑

π1,...,πk

⎛

⎝
k∏

i=1

ti∏

j=2

κBi
j

⎞

⎠ =
k∏

i=1

⎛

⎝
∞∑

ni"Bi
1

∑

πi∋Bi
1

ti∏

j=2

κBi
j

⎞

⎠ .

(A10)

We next simplify the factors on the right-hand side (RHS)
of Eq. (A10). First, we shift the (dummy) indices of summation
and multiplication to explicitly begin counting at the second
block in the branch:

∞∑

ni"Bi
1

∑

πi∋Bi
1

ti∏

j=2

κBi
j
=

∞∑

n′
i=0

∑

π ′
i

t ′i∏

j=1

κBi
j+1

,

where n′
i = ni − Bi

1, π ′
i = πi\{Bi

1} and t ′i = ti − 1 as we
exclude the Bi

1 component. For simplicity, we will drop the
primes in the summation indices, and then let Bi

j range
over the components of the resulting partition (thus rewriting
j + 1 → j below). Doing this, and further rearranging the
terms, we have

∞∑

ni=0

∑

πi

ti∏

j=1

κBi
j

=
∞∑

ti=0

∑

ni"ti

∑

πi

ti∏

j=1

κBi
j
=

∞∑

ti=0

ti∏

j=1

∞∑

Bi
j =1

κBi
j

=
∞∑

ti=0

⎛

⎝
∞∑

ni=1

κni

⎞

⎠
ti

=
(

1 −
∞∑

n=1

κn

)−1

,

where we have summed the geometric series in the last
inequality (note the convergence criterion in the Theorem
statement).

Therefore, Eq. (A10) and the expression above it yield

∞∑

n1,...,nk=1

µn1,...,nk

=
∑

χ

∞∑

B
i1
1 ,...,B

is
1 "1

∏

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1

(

1 −
∞∑

n=1

κn

)−k

=
(

1 −
∞∑

n=1

κn

)−k ∑

χ

∏

{i1,...,is }∈χ

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠

= (1 − q)−k
∑

χ

∏

{i1,...,is }∈χ

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠ ,

where we let q =
∑∞

n=1 κn. The above gives a useful expres-
sion for the sum over all motifs with exactly k branches
of nonzero length. To establish the theorem, we use this
expression for different subsets of {1, . . . ,k′} (hence different
k) that occur in Eq. (A9). Doing this, we have

∞∑

n1,...,nk′=0

µn1,...,nk′ =
∑

{j1, . . . ,jk}
⊂ {1, . . . ,k′}

∑

χk

(1 − q)−k

×
∏

{i1,...,is }∈χk

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠ ,

where χk is a partition of the set {j1, . . . ,jk} (though we
only use the subscript k, χk should actually depend on the
set {j1, . . . ,jk}). We next rearrange this expression. First,
we define a lift of each partition χk to a partition χ of the
set {1, . . . ,k′}, by adding any indices not present in χk as
individual groups {ik+1}, . . . ,{ik′}. Next we split the sum across
{j1, . . . ,jk} and χk according to their resulting lift χ . This
creates an outer sum; here, the range of χ is all possible
partitions of {1, . . . ,k′}. Thus, the expression above is

=
∑

χ

∑

χk |χ
(1 − q)−k

∏

{i1, . . . ,is } ∈ χk

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠ .

The inner sum is over all χk , 0 ! k ! k′ whose lift is χ . We
can pull out all factors associated with groups in χk that have
only 1 element. Note that each of such group {ir} corresponds
to a factor

∑∞
Bir

1 "1 κBir
1

= q. Therefore, the rest of the factors
in

∏
{i1,...,is }∈χk

are (k − m2) q-factors, where m2 is the number
of indices that are partitioned into a group with more than one
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element in χk (or χ ). Thus, the expression above is

=
∑

χ

∑

χk |χ
(1 − q)−kqk−m2

×
∏

{i1, . . . ,is } ∈ χk ,
s > 1

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠

= (1 − q)−k′ ∑

χ

∏

{i1, . . . ,is } ∈ χ ,
s > 1

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠

×

⎛

⎝
∑

χk |χ
qk−m2 (1 − q)k

′−k

⎞

⎠ .

For a fixed k, it is easy to see the number of χk whose lift
being χ is ( k′−m2

k−m2
). Hence,

∑

χk |χ
qk−m2 (1 − q)k

′−k=
k′∑

k=0

(
k′−m2

k − m2

)
qk−m2 (1 − q)k

′−k = 1.

Finally, the expression above is

= (1 − q)−k′ ∑

χ

∏

{i1, . . . ,is } ∈ χ ,
s > 1

⎛

⎜⎝
∞∑

B
i1
1 ,...,B

is
1 "1

κ
B

i1
1 ,...,B

is
1

⎞

⎟⎠

= (1 − q)−k′ ∑

π

f (π )
∏

B∈π,B>1

( ∞∑

n1,...,nB=1

κn1,...,nB

)

.

In the last line, since the factor with κ∗ is the same as long
as s is the same, regardless of the actual value of i1, . . . ,is , we
switched from summing over set partitions χ to corresponding
integer partitions π of k′. This introduces the f (π ) factor and
finishes the proof [see Eq. (19)].

6. Establishing the subpopulation cumulant corollary (12)

Beyond the similarity in appearance between the single
population and subpopulation formulas given by Eqs. (8)
and (12), these two can be precisely connected. Define a new
product between two matrices (or tensors) as

(A ⊙ B)ij =
∑

k

AikBjk

Nk

N
. (A11)

It is easy to see that Eqs. (10) and (11) are equivalent to Eqs. (6)
and (7) when the product is interpreted as ⊙. Very much like
the ordinary matrix multiplication, ⊙ is noncommutative, but
is associative and distributive, which are all that we need for the
theory. This shows that Eq. (12) can be proved identically as
the single population case given by Eq. (8) while interpreting
products via ⊙.

7. Subpopulation theory for higher-order correlations

The idea in this Appendix, Sec. 6, is exactly how we will
develop the subpopulation theory for higher-order correlations.

Under the interpretation of ⊙, the relationship among subpop-
ulation motif moments and cumulants can be written as

µn1,...,nk
=

∑

π1,...,πk

⎛

⎝
k⊗

i=1

ti∏

j=2

κBi
j

⎞

⎠

⎛

⎝
∑

χ

⊙

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1 ,·

⎞

⎠ .

(A12)

As before, πi = {Bi
1, . . . ,B

i
ti
} is an ordered partition of ni .

Moreover, χ is a partition of the set {1, . . . ,k} and {i1, . . . ,is}
is one set of indices that are grouped together under χ . Here,
µn1,...,nk

(for k " 2) is a k-dimensional tensor: each entry
µα1,...,αk

n1,...,nk
represents the frequency of a k-branch motif with

endpoints in subpopulation α1, . . . ,αk , respectively. Notably,
there is a third type of quantity appearing in Eq. (A12):
κ

B
i1
1 ,...,B

is
1 ,·, which is a s + 1 tensor (s " 2). The extra dimen-

sion (represented by the dot in the subscript) comes from
specifying the subpopulation of the root node, beside the
subpopulation of the endpoints. This is the same situation
as for one-branch or chain motifs µn1

and κBi
j
, which are

2-tensors (b × b matrices) and should formally be written as
µn1,· and κBi

j ,·; we omit the dot for these chains as long as it
is clear from the context. The big ⊙ product forms a k tensor
out of |χ | factors, in a way similar to a multivariate trace:
⎛

⎝
⊙

{i1,...,is }∈χ

κ
B

i1
1 ,...,B

is
1 ,·

⎞

⎠
α1,...,αk

=
b∑

β=1

Nβ

N

∏

{i1,...,is }∈χ

κ
αi1 ,...,αis ,β

B
i1
1 ,...,B

is
1 ,·

.

(A13)
As an example, if χ only contains one partition, that consists
of the set itself, we define κB1

1 ,...,Bk
1

:=
⊙

κB1
1 ,...,Bk

1 ,·. It is not
hard to see that the meaning of the resulting s-tensor κB1

1 ,...,Bk
1

is the motif cumulant with specified subpopulations for the
endpoints.

The tensor product “
⊗k

j=1” in Eq. (A12) is simply a
weighted version of the ordinary tensor product, that is,
⎛

⎝
k⊗

j=1

Pj · A

⎞

⎠
α1,...,αk

=
∑

β1,...,βk

⎛

⎝
k∏

j=1

Nj

N
(Pj )αj ,βj

⎞

⎠ Aβ1,...,βk .

(A14)

Despite the difference in notation between Eqs. (A12) and (18),
the operations share some basic algebraic properties, namely,
being associative and distributive—which are all that is needed
in the proof of Eq. (21). This allows us to derive, with identical
arguments, the subpopulation result:

Corollary 2.

⟨Sy[k]⟩B
Sx[k]

= 1
Nk−1

k⊗

i=1

(

I −
∞∑

n=1

gnκn

)−1

×

⎡

⎣
∑

χ

⊙

{i1}∈χ

E−1
⊙

{i1,...,is }∈χ ,s>1

×

⎛

⎝
∞∑

n1,...,ns=1

g|n|κn1,...,ns ,·

⎞

⎠

⎤

⎦ . (A15)
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Here, the two “
⊙

” terms are actually two parts of one single product associated with χ , as defined in Eq. (A13). Specifically,⎡

⎣
⊙

{i1}∈χ

E−1
⊙

{i1,...,is }∈χ ,s>1

⎛

⎝
∞∑

n1,...,ns=1

g|n|κn1,...,ns ,·

⎞

⎠

⎤

⎦
α1,...,αk

=
b∑

β=1

Nβ

N

∏

{i1}∈χ

(E−1)αi1 β

∏

{i1,...,is }∈χ

κ
αi1 ,...,αis ,β

B
i1
1 ,...,B

is
1 ,·

.

We emphasize again that all multiplicative operations in the formula above should be interpreted as for ⊙.
However, it is also easy to rewrite this expression using only ordinary products, by inserting the diagonal scaling matrix E.

For example, enumerating the terms for third-order correlation (k = 3) yields

⟨Sy[3]⟩B/Sx[3] = 1
N2

(

I −
∞∑

l=1

glκ lE

)−1

⊗
(

I −
∞∑

m=1

gmκmE

)−1

⊗
(

I −
∞∑

n=1

gnκnE

)−1

×
[

E−2
[3] +

∞∑

l,m=1

gl+m(κ l,m,· + κ l,·,m + κ ·,l,m) +
∞∑

l,m,n=1

gl+m+nκ l,m,n

]

. (A16)

Here, E−2
[3] is a diagonal 3-tensor, with (E−2

[3] )αβγ = δαβγ (Nα

N
)−2. κ l,·,m and κ ·,l,m are transpositions of the tensor κ l,m,·, i.e.,

(κ l,m,·)i1,i2,i3 = (κ l,·,m)i1,i3,i2 = (κ ·,l,m)i3,i1,i2 .
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