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An essential step toward understanding neural circuits is

linking their structure and their dynamics. In general, this

relationship can be almost arbitrarily complex. Recent

theoretical work has, however, begun to identify some broad

principles underlying collective spiking activity in neural

circuits. The first is that local features of network connectivity

can be surprisingly effective in predicting global statistics of

activity across a network. The second is that, for the important

case of large networks with excitatory-inhibitory balance,

correlated spiking persists or vanishes depending on the

spatial scales of recurrent and feedforward connectivity. We

close by showing how these ideas, together with plasticity

rules, can help to close the loop between network structure

and activity statistics.
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Introduction
Here, we focus on relating network connectivity to col-

lective activity at the level of spike times, or correlations in
www.sciencedirect.com 
neurons’ spike trains (see Box 1). Such correlations are

known to have complex but potentially strong relations

with coding in single neurons [1] and neural populations

[2–5], and can modulate the drive to a downstream

population [6]. Moreover, such correlated activity can

modulate the evolution of synaptic strengths through

spike timing dependent plasticity (STDP) ([7,8��,9],
but see [10]).

Collective spiking arises from two mechanisms: connec-

tions among neurons within a population, and external

inputs or modulations affecting the entire population

[11–13]. Experiments suggest that both are important.

Patterns of correlations in cortical micro-circuits have

been related to connection probabilities and strengths

[14]. At the same time, latent variable models of dynamics

applied to cortical data have revealed a strong impact of

global inputs to the population [15,16��,17,18].

At first, the path to understanding these mechanisms

seems extremely complicated. Electron microscopy

(EM) and allied reconstruction methods promise connec-

tomes among thousands of nearby cells, tabulating an

enormous amount of data [19–25]. This begs the ques-

tion of what statistics of connectivity matter most — and

least — in driving the important activity patterns of neural

populations. The answer would give us a set of meaning-

ful ‘features’ of a connectome that link to basic statistical

features of the dynamics that such a network produces.

Our aim here is to highlight recent theoretical advances

toward this goal.

Mechanisms and definitions: sources and
descriptions of (co)variability in spike trains
Neurons often appear to admit spikes stochastically. Such

variability can be due to noise from, for example, synaptic

release [28], and can be internally generated via a chaotic

‘balanced’ state [29,30,31��]. As a consequence, the struc-

ture of spike trains is best described statistically. The

most commonly used statistics are the instantaneous

firing rate of each neuron, the autocorrelation function

of the spike train (the probability of observing pairs of

spikes in a given cell separated by a time lag s), and the

cross-correlation function (likewise, for spikes generated

by two different cells). As shown in Box 1, even weak

correlations yield coherent, population-wide fluctuations

in spiking activity that can have a significant impact on
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Box 1 Spike train statistics.

The spike train of neuron i is defined as a sum of delta functions, yiðtÞ ¼ P
kd t � tki
� �

; tki is the time of neuroni’s kth spike. Spike train moments can

be obtained from samples of the spike trains of each neuron in a population. The first spike train moment is the instantaneous firing rate, hyi(t)i. The

angular brackets hi denote an average over trials. The correlation of two spike trains is mij(ti, tj) = hyi(ti)yj(tj)i. If i = j it is an autocorrelation, otherwise

a cross-correlation. In general a nth order correlation, or moment, of n spike trains, is defined as a trial-average of products of those spike trains:

mi;j;...;nðti; . . . ; tnÞ ¼ h
Yn
i¼1

yiðtiÞi ð1Þ

In practice, time is discretized into increments of size Dt, and spike trains are binned. Equation 1 is recovered from its discrete counterpart in the limit

Dt ! 0. If the spike trains are stationary (their statistics do not change over time) we can replace averages over trials with averages over time. The

correlation in this case only depends on the time lag in between spikes:

mi;j;...;nðsj ; . . . ; snÞ ¼ 1

T

Z T

0

dti yiðtiÞ
Yn
j¼iþ1

yjðti þ sjÞ ð2Þ

where sj = tj � ti for j = i + 1, . . . , n. The correlation function measures the frequency of spike pairs. Two uncorrelated Poisson processes with rates

ri and rj have mij(s) = rirj, independent of the time lag s. The statistics of any linear functional of the spike trains (such as output spike counts, or

synaptic outputs or inputs) can be derived from these spike train statistics [16��,26��].

The joint moments of the spike trains in a population also determine the variability and temporal correlations of the population-averaged activity,

yðtÞ ¼ 1
N

PN
i¼1 yiðtÞ. The average over the population can be interchanged with the average over trials and product over neurons in Equation 1 so

that a mth order moment of the population activity, y, is given by:

mðti ; . . . ; tmÞ ¼ 1

Nm

X
1�j1 ;...;jm�N

mj1 ;...;jm ðti; . . . ; tmÞ

Even weak correlations in m can give rise to strong population fluctuations (Panel A).

Finally, moments mix interactions of different orders. To account for lower-order contributions, we can define cumulants of the spike trains. The

first cumulant and the first moment both equal the instantaneous firing rate. The second cumulant is the covariance function of the spike train:

Cij(s) = mij(s) � rirj. The third spike train cumulant similarly measures the frequency of triplets of spikes, above what could be expected by

composing those triplets of individual spikes and pairwise covariances. Higher order cumulants have similar interpretations [27].
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Pairwise correlations and population variability. (a) Variability of the population-averaged activity in 200 uncoupled integrate-and-fire neurons

receiving white noise inputs with different strengths of spatial input correlation. (b) Cross-covariance of two neurons’ spike trains in a feed-forward

microcircuit with two excitatory (cell 2,3) and one inhibitory (cell 1) neurons. Top: simulation of (black) versus linear response theory (blue; Equation

6). Bottom: contribution of different length paths through the microcircuit (Equation 8). Adapted from [38�].
cells downstream [6]. Similarly, higher-order correlations

are related to the probability of observing triplets, quad-

ruplets or more spikes in a group of neurons, separated by

a given collection of time lags (Box 1).
Current Opinion in Neurobiology 2017, 46:109–119 
Spike train covariability from recurrent
connectivity and external input
In recent years, neuroscientists have advanced a very

general framework for predicting how spike train
www.sciencedirect.com
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correlations (more specifically, cumulants; Box 1) depend

on the structure of recurrent connectivity and external

input. This framework is based on linearizing the response
of a neuron around a baseline state of irregular firing. For

simplicity, we will present this in the temporal Fourier

domain; the time-domain equations have similar forms

with integrals over time. Assuming that each neuron

linearly filters its synaptic inputs, and that in the absence

of correlating inputs from the model network or external

sources it has a baseline spike train y0i ðvÞ, we can write its

spike train yi(v) as:

yiðvÞ ¼ y0i ðvÞ|fflffl{zfflffl}
baseline

þAiðvÞðjiðvÞ|ffl{zffl}
external

þ
X
j

WijðvÞyjðvÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

internal

Þ ð3Þ

Here, Ai(v) is the linear response of neuron i’s trial-
averaged rate to a perturbation in its synaptic input (Four-

ier transform of its impulse response, or PSTH [34]), and

ji(v) is an external signal to neuron i. Finally, the network

is described by its synaptic weight matrix W(v); Wij(v)
encodes the weight and time-course of synaptic connec-

tions from neuron j to neuron i. Below, we will suppress

the v-dependence of all variables for ease of notation.

We will use the linear response ansatz of Equation 3 to

calculate trial-averaged spike train statistics. The sim-

plest such is the firing rate. Collecting the spike trains yi in
the vector y (and similar for y0 and j), we can average over

trials in Equation 3 to obtain:

hyi ¼ I � Kð Þ�1 hy0i þ Ahji� � ð4Þ

where h i denotes an average over trials. We have defined

the effective interaction matrix Kij = AiiWij of synaptic

weights weighted by the postsynaptic response gain. The

first factor on the right-hand side of Equation 4 is

D � I � Kð Þ�1: ð5Þ

Dij determines how the baseline and externally-driven

activity of neuron j propagates through the network to

impact neuron i’s activity. We call Dij a propagator.

Finally, we can also use Equation 3 to calculate the

correlations between neurons’ activities. For simplicity,

we remain in the temporal Fourier domain and present

the result as a matrix of spike train auto- and cross-spectra,
C(v); this is the matrix of the Fourier transforms of the

familiar auto- and cross-covariance functions. The auto-

(cross-) spectra correspond to diagonal (off-diagonal)

terms of C(v). In particular, evaluated at v = 0, these

terms give the variance and co-variance of spike counts

over any time window large enough to contain the
www.sciencedirect.com 
underlying auto and cross-correlation functions

[32,33]. The spectral matrix C(v) is given by:

C ¼ DC0D�|fflfflffl{zfflfflffl}
internal

þ D ACextA�ð ÞD�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
external

ð6Þ

where * denotes the conjugate transpose. The matrix C0

is diagonal, containing the power spectrum of each neu-

ron’s baseline spike train y0i . The first term thus describes

how the baseline variable spike emission propagates

through the network to give rise to correlated activity

in pairs of neurons.

The second right-hand side term of Equation 6 describes

how correlated external inputs give rise to correlated

activity. The correlation of the external inputs to different

neurons, ji and jj, is described by their cross-spectrum

Cext
ij . The direct impact of external inputs on joint activity

in their targets is ACextA�ð Þ. The multiplication with D
and D* then describes how that externally-driven joint

activity propagates through the network.

In the simplest case of an uncoupled pair of neurons i and

j receiving common inputs, Equation 6 reduces to

CijðvÞ ¼ AiðvÞCext
ij ðvÞAjð�vÞ [32,36]. The covariance

of the two spike trains is thus given by the input covari-

ance, multiplied by the gain with which each neuron

transfers those common inputs to its output. Analyses of

uncoupled neurons have also yielded insight into the

mechanisms for higher-order spike train correlations

and the distribution of population activity [89,90].

Equation 6 has a rich history: Sejnowski used a similar

expression in describing collective fluctuations in firing

rate networks [40]. Linder, Doiron, Longtin and collea-

gues derived this expression in the case of stochastically

driven integrate and fire neurons [41,42], an approach

generalized by Trousdale et al. [38�] (see a comparison

between the linear response approximation Equation 7

and simulation of exponential integration-and-fire neu-

rons in Box 1, Panel B). Hawkes derived an equivalent

expression for the case of linearly interacting point pro-

cesses (now called a multivariate Hawkes process), as

pointed out by Pernice et al., who applied and directly

related them to neural models [37��,43,44]. The corre-

spondence of the rate dynamics of the Hawkes model,

networks of integrate-and-fire neurons, and binary neuron

models, was discussed in detail in [45] and the direct

approximation of integrate-and-fire neurons by linear-

nonlinear-Poisson models in [46].

Moreover, Buice and colleagues [47] developed a field

theoretical method that encompasses the above approach

and extends the formulation to correlations of arbitrary

order. Importantly, this also allows for nonlinear interac-

tions. An expansion can be derived via this method that
Current Opinion in Neurobiology 2017, 46:109–119
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describes the coupling of higher order correlations to lower

moments: in particular, pairwise correlations can impact

the activity predicted from mean field theory [26��]. The

field theoretic approach has also been applied to models of

coupled oscillators related to neural networks, specifically

the Kuramoto model [48,49] and networks of ‘theta’

neurons [50]. Similarly, Rangan developed a motif expan-

sion of the operator governing the stationary dynamics of

an integrate-and-fire network [51�].

We have presented the linear response theory for spike

train covariances in the context of linearizing neurons’

activity around a baseline stationary state. This theory

thus requires access to knowledge of the fluctuations of

the baseline state, C0, and linear response functions A. In

large networks, internally generated variability can be

temporally correlated which presents a complication

[85,86]. When connections are sufficiently strong, this

slow variability can reflect a loss of stability of the baseline

state [88,91,92]. The predictions of the baseline single-

neuron spiking activity and linear response in the face of

slow internally-generated fluctuations pose additional

challenges which have just begun to be explored [87].

Finally, a global modulation in the activity of many neurons

due to shifts in attention, vigilance state, and/or motor

activity, would result in low-rank matrix Cext. In this case

the second, external term of Equation 6 will itself be low

rank, since the rank of a matrix product AB is bounded

above by the ranks of A and B. Experimentally obtained

spike covariance matrices can be decomposed into a low-

rank and ‘residual’ terms [35,15] that could correspond to

the two terms in the matrix decomposition Equation 6.

Network motifs shape collective spiking
across populations
In order to investigate the synaptic interactions contrib-

uting to the propagator matrix D, we can expand it in

powers of the interaction matrix K as

D ¼
X1
m¼0

Km: ð7Þ

This expansion has a simple interpretation: Km
ij represents

paths from a neuron i to neuron j that are exactly m
synapses long (with synaptic weights W weighted by the

postsynaptic response gain A) [37��,38�]. Using this

expansion in Equation 6, without external input, also

provides an intuitive description of the spike train

cross-spectra in terms of paths through the network,

Cij �
XX
m¼0

XY
n¼0

X
k

ðKmÞikðK�Þnkj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
path terms

C0
kk: ð8Þ
Current Opinion in Neurobiology 2017, 46:109–119 
This expression explicitly captures contribution to the

cross-spectrum, Cij, of all paths of up to X synapses ending

at neuron i, and all paths of up to Y synapses ending at

neuron j. The index k runs over all neurons. A first step

toward the path expansion was taken by Ostojic, Brunel &

Hakim, who explored the first-order truncation of Equa-

tion 6 for two cells, thus capturing contributions from

direct connections and common inputs [39]. In multi-

cell circuits, different orders of Equation 8 reveal the

contributions of different length paths through the net-

work (Box 1, panel B).

The relationship of spike train cross-spectra to pathways

through the network provides a powerful tool for under-

standing how network connectivity shapes population-

wide network activity. The population power spectrum is

given by the average over the cross-spectral matrix:

C = hCijii,j (the subscripts on the angular brackets denote

averaging over pairs of neurons within a given network;

Box 1). Therefore C(v) is the average of the left-hand side

of Equation 8. The right-hand side of Equation 8 can in

turn be linked to the motif moments that describe the mean

strength of different weighted microcircuits in the

network.

Assuming cellular response properties are homogeneous,

the interaction matrix can be written as K = AW, where

the scalar kernel A is the same response kernel for all cells.

If the baseline auto-correlations, hence C0
kk, are also equal

across the network, the ‘path terms’ appearing in Equa-

tion 8 are directly proportional to the motif moments of the

connectivity matrix W, defined as:

mm;n ¼ hWm WT
� �nii;j=Nmþnþ1: ð9Þ

This measures the average strength of a (m, n)–motif

composed of two paths of synapses emanating from a

neuron k with one path of m synapses ending at neuron i,
the other path of n synapses ending at neuron j. Examples

of a (1, 1)-motif, and (1, 2)-motif are shown in Figure 1a.

For networks where Wij = 0 or 1, mm,n is also the frequency

of observing a motif in the network. Equation 8 thus

provides a way to approximate how average correlations

depend on the frequency of motifs in the network.

An accurate approximation of the population power spec-

trum typically requires knowledge of many-synapse

motifs (Figure 1c), which are difficult to measure experi-

mentally. Importantly, however, the contribution of

higher-order motifs can often be decomposed into con-

tributions of smaller, component motifs by introdu-

cing motif cumulants (Figure 1b) [52��,53�]. This approach

allows us to remove redundancies in motif statistics, and

isolate the impact solely due to higher order motif struc-

ture. A motif cumulant expansion allows Equation 8 to be

re-arranged in order to only truncate higher-order motif
www.sciencedirect.com
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Figure 1

(a) (b) (c)

(d)
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(a) Various motifs are identified throughout the neural network. Their frequency can be measured by counting their occurrence. (b) The probability

of a motif (motif moments mm,n, see text) can be decomposed into cumulants of smaller motifs. (c) Comparing the average correlation between

excitatory neurons calculated using motif statistics of all orders (X, Y ! 1 in Equation 8) and approximations using up to second order (X + Y � 2)

for 512 networks (different dots) with various motif structures. Each network is composed of 80 excitatory and 20 inhibitory neurons. The deviation

from the dashed line y = x shows that motif moments beyond second order are needed to accurately describe correlations. (d) Same as (c) for a

motif cumulant expansion (Eqn 44 in [52��], a generalization of the motif cumulant theory for networks with multiple neuron populations) truncated

after second order motif terms; both panels adapted from [52��].
cumulants, rather than moments, providing a much-

improved estimation of the spike train covariances

(Figure 1c versus d, [52��]) that is still based only on

very small motifs. This provides an efficient link between

local connectivity structures and population-wide activity.

This theory provides a link between the connectomics of

anatomically reconstructed neural circuits and their inter-

nally-generated correlations. Whether its predictions are

consistent with new joint measurements of circuit activity

and structure will be a powerful test. Significant motif

cumulant structure exists in local networks of both cortex

[54,55] and area CA3 of the hippocampus, where it has

been suggested to play a crucial role in pattern comple-

tion [56]. This decomposition could also be used to

estimate constraints on the possible functional network

structures from recorded spike train correlations. Finally

as we will see in Sec. 6, correlations in turn can shape a

network’s motif structure through synaptic plasticity.

Measurements of connectivity patterns amongst small

numbers of neurons could thus constrain predictions

for the evolution of network structure and activity.

Higher-order correlations and network structure

While we have discussed how network structure gives rise

to correlations in pairs of spike trains, joint activity in

larger groups of neurons, described by higher-order cor-

relations, can significantly affect population activity [57–

59]. Analogous results to Equation 6 exist for higher-order

correlations in stochastically spiking models

[26��,47,60,61]. Network structure has been linked to

the strength of third-order correlations in networks with

narrow degree distributions [62��], and the allied motif

cumulant theory developed [63], advancing the aim of
www.sciencedirect.com 
understanding how local connectivity structure impacts

higher-order correlations across networks. Finally, a range

of work has characterized the statistics of avalanches of

neuronal activity: population bursts with power law size

distributions [64], which potentially suggest a network

operating near an instability [65].

Motifs and stability

The results discussed so far rely on an expansion of

activity around a baseline state where neurons fire asyn-

chronously. How such states arise is a question addressed

in part by the mean-field theory of spiking networks

[29,31��,66,67,68��,69�]. The existence of a stable station-

ary state depends on the structure of connectivity

between neurons. In particular, when connectivity is

strong and neurons have heterogeneous in-degrees, the

existence of a stable mean-field solution can be lost

[70,71]. One way to rescue a stable activity regime is to

introduce correlations between neurons’ in and out-

degrees [70]; these correspond to chain motifs (k2 in

Figure 1b). Therefore the motifs that control correlated

variability also affect the stability of asynchronous bal-

anced states.

Motif structure also affects oscillatory population activity.

Roxin showed that in a rate model generating oscillations

of the population activity, the variance of in-degrees

(related to the strength of convergent motifs) controls

the onset of oscillations [72]. Zhao et al. took a comple-

mentary approach of examining the stability of

completely asynchronous and completely synchronous

states, showing that two-synapse chains and convergent

pairs of inputs regulate the stability of synchronous

activity [73��].
Current Opinion in Neurobiology 2017, 46:109–119
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Spatial scale of connectivity and inputs
determines correlations in large networks
Cortical neurons receive strong external and recurrent

excitatory projections that could, if left unchecked, drive

neuronal activity to saturated levels. Fortunately, strong

recurrent inhibition balances excitation, acting to stabilize

cortical activity and allow moderate firing. These large

and balanced inhibitory and excitatory inputs are a major

source of synaptic fluctuations, ultimately generating

output spiking activity with Poisson-like variability

[74,75].

A central feature of balanced networks is that they pro-

duce asynchronous, uncorrelated spiking activity (in the

limit of large networks). Original treatments of balanced

networks by van Vreeswijk and Sompolinsky [29,30] and

Amit and Brunel [76] explained asynchronous activity by

assuming sparse wiring within the network, so that shared

inputs between neurons were negligible. Renart, de la

Rocha, Harris and colleagues showed that homogeneous

balanced networks admit an asynchronous solution

despite dense wiring [31��] (for large networks). This

result suggests a much deeper relationship between bal-

ance and asynchronous activity than previously realized.

Building on this work, Rosenbaum, Doiron and collea-

gues extended the theory of balanced networks to include

spatially dependent connectivity [16��,77]. We review

below how the spatial spread of connectivity provides

new routes to correlated activity in balanced networks.

Consider a two-layer network, with the second layer

receiving both feedforward (F) and recurrent (R) inputs

(Figure 2a). Assume that the second layer is composed of

both excitatory and inhibitory neurons, so that R contains

excitatory and inhibitory synaptic inputs. The feedfor-

ward pathway can then include both excitation and inhi-

bition, or only one of the two. For simplicity, we assume

that the widths of recurrent excitation and inhibition are

equal and take the feedforward and recurrent projections

to have Gaussian profiles with widths sF and sR, respec-

tively. Each neuron thus receives the combined input

I = F + R. Considering a representative pair of layer two

neurons separated by a distance d, this yields a decom-

position of their inputs’ covariance CII as:

CIIðdÞ ¼ CFFðdÞ þ CRRðdÞ þ 2CRFðdÞ: ð10Þ

Here CFF and CRR are the covariances of the feedforward

and recurrent portions of the two neurons’ inputs, respec-

tively, while CRF is the indirect contribution to covariance

from the recurrent pathway tracking the feedforward

pathway.

If the network coupling is dense and the first-layer

neurons are uncorrelated with one another then CFF,

CRR and CRF are all Oð1Þ. This means that feedforward
Current Opinion in Neurobiology 2017, 46:109–119 
and recurrent projections are potential sources of correla-

tions within the network. The asynchronous state

requires that CII � Oð1=NÞ. This can only be true if

the feedforward and recurrent correlations are balanced
so that the recurrent pathway tracks and cancels the

correlations due to the feedfoward pathway. If we take

N ! 1 then in the asynchronous state, C(d) ! 0 implies:

CRFðdÞ ¼ � 1

2
CFFðdÞ þ CRRðdÞð Þ: ð11Þ

This must be true for every distance d, and from Equation

10 we derive [16��] that the various spatial scales must

satisfy:

s2
F ¼ s2

R þ s2
rate: ð12Þ

Here s2
rate is the spatial scale of correlated firing within the

network. The intuition here is that for cancellation at

every d the spatial scale of feedforward and recurrent

correlations must match one another. While the spatial

scale of CFF(d) is determined only by sF, the scale of

recurrent correlations is calculated from the correlated

spiking activity convolved with the recurrent coupling

(hence the sum s2
R þ s2

rate). While sF and sR are architec-

tural parameters of the circuit (and hence fixed), srate is a

model output that must be determined. For any solution

to make sense we require that srate > 0. This gives a

compact asynchrony condition: sF > sR. In other words

for feedforward and recurrent correlations to cancel, the

spatial spread of feedforward projections must be larger

than the spatial spread of recurrent projections.

To illustrate how the spatial scales of connectivity control

the asynchronous solution, we analyze the activity of a

balanced spiking network when sF > sR is satisfied

(Figure 2b1, left). As expected, the spiking activity is

roughly asynchronous with spike count correlations near

zero (Figure 2b1, middle). While they are not identically

zero, the correlations approach zero as network size

increases, if sF > sR [16��]. When we examine the con-

tributions of the feedforward and recurrent pathways, we

see that the relation in Equation 11 is satisfied

(Figure 2b1, right). We contrast this to the case when

sF < sR, violating the asynchrony condition (Figure 2b2,

left). Here, a clear signature of correlations is found:

neuron that are nearby one another are positively corre-

lated while more distant neuron pairs are negatively

correlated. Crucially, these correlations do not vanish in

the limit of large networks [16��].

Layer 2/3 of macaque visual area V1 is expected to have

sF < sR, with long range projections within 2/3 being

broader than L4 projections to L2/3 [78,79]. Smith and

Kohn collected population activity over large distances in
www.sciencedirect.com
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Figure 2
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Correlated activity in balanced networks with spatially dependent connections. (a) Schematic of the two layer network. The blue/red zones

denotes the spatial scale of feedforward/recurrent connectivity. (b1) Broad feedforward and narrow recurrent connectivity (left) produce an

asynchronous state (middle). The asynchrony requires a cancellation of CRR(d) and CFF(d) by CRF(d) at all distances (right). (b2) Narrow

feedforward and broad recurrent connectivity (left) produce spatially structured correlations (middle) because CRF(d) does not cancel CRR(d) and

CFF(d) (right). (c) When a one-dimensional latent variable is extracted and removed from the primate V1 array data, the model predictions (left) are

validated (right). Panels are from [16��].
layer 2/3 of macaque V1 [80]. When a low-rank source of

correlations (putatively corresponding to the external

term of Equation 6), the spatial signature predicted

above is revealed (Figure 2c).

While these arguments give conditions for when the

asynchronous solution will exist, it cannot give an esti-

mate of correlated activity. Rather, when either N <1 or

sF < sR, we require the linear response formulation of

Equation 6 to give a prediction of how network correla-

tions scale with distance (red dashed in Figure 2b1 and

b2, middle). It is interesting to note that a majority of the

fluctuations are internally generated within the balanced

circuit and subsequently have a rich spectrum of time-

scales. For spikes counted over long windows, the linear

response formalism of Equation 6 once again predicts the

underlying correlations (‘theory curves’).

Joint activity drives plasticity of recurrent
connectivity
The structure of neuronal networks is plastic, with syn-

apses potentiating or depressing in a way that depends on

pre- and postsynaptic spiking activity [81]. When synap-

tic plasticity is slow compared to the timescales of spiking

dynamics, changes in synaptic weights are linked to the

statistics of the spike trains [82]:

Wi̇j ¼ f miðt iÞ; mjðt jÞ
� �þ g mijðt i; t jÞ

� �
þ h mijkðt i; t j; tkÞ

� �þ . . . ð13Þ
www.sciencedirect.com 
where _W denotes the dynamics of the connectivity matrix

W on the slow timescale of plasticity. f determines the

weight changes due to individual presynaptic and post-

synaptic spikes, g determines weight changes due to pairs

of spikes, h weight changes due to spike triplets, and so

on. For plasticity rules based on pairs of presynaptic and

postsynaptic spikes, this results in a joint evolution of the

weight matrix W, the firing rates,~r, and the cross-covar-

iances, C (Figure 3a–c).
As we saw above, spike train cumulants depend on the

network structure. In the presence of plasticity mecha-

nisms, the structure of neuronal networks thus controls its

own evolution — both directly by generating correlations

[8��,9] and indirectly, by filtering the correlations inher-

ited from external sources [83��,84]. Recent work has

leveraged this connection to determine how particular

structural motifs shape spike train correlations to drive

plasticity [9]. A further step is to close the loop on motifs,

leveraging approximations of the true spike-train correla-

tions in order to predict the plasticity dynamics of motif

statistics. The definitions of motif moments and cumu-

lants involve an average over the population (Equa-

tion 9). This links their plasticity to the average spike

train moments across the population, allowing the deri-

vation of dynamical rules governing the plasticity, not of

individual synapses, but of the average strength of con-

nectivity motifs [8��,84]:

_~k ¼ F m ~k; Cextð Þð Þ; ð14Þ
Current Opinion in Neurobiology 2017, 46:109–119
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Spike timing-dependent plasticity gives rise to joint evolution of synaptic weights, spike train covariances, and motif statistics. Panels from [8��].
(a) Diagram of network structure. (b) Evolution of the three synapses highlighted in panel A. Red: theoretical prediction. Gray: evolution of synaptic

weights on individual trials. Black: trial-averaged synaptic weight. (c) Evolution of the spike train covariances between the presynaptic and

postsynaptic cells of each synapse, predicted using the first-order truncation of Equation 8. Shading corresponds to the time points marked with

arrows below the time axis of panel B. As synaptic weights potentiate or depress, the causal ‘bumps’ they contribute to the spike train covariance

grows or shrinks. (d) Projection of the joint dynamics of two-synapse motif cumulants into the (divergent, chain) plane under a pair-based, additive

Hebbian plasticity rule.
where ~k represents a chosen set of motif cumulants and

the form of the function F depends on the plasticity

model used.
One such analysis reveals that under an additive, pair-

based plasticity rule where pre-post pairs cause potenti-

ation and post-pre pairs cause depression, an unstruc-

tured weight matrix (with zero motif cumulants) is unsta-

ble: the average strength of motifs will spontaneously

potentiate or depress, creating structure in the synaptic

weights (Figure 3d), [8��]. So far, such studies have

focused on plasticity driven by spike pairs, relying on

the linear response theories of [37��,38�,43]. More bio-

logically realistic plasticity models rely on multi-spike

interactions and variables measuring postsynaptic volt-

age or calcium concentrations [7]. Theories describing

higher-order spike-train and spike-voltage or spike-cal-

cium correlations will provide a new window through

which to examine networks endowed with these richer

plasticity rules.
Current Opinion in Neurobiology 2017, 46:109–119 
Conclusion
The next few years could be pivotal for the study of how

network structure drives neural dynamics. Spectacular

experimental methods are producing vast datasets that

unite connectivity and activity data in new ways

[14,21,19,23]. Does our field have a theory equal to the

data? We’ve reviewed how mathematical tools can sepa-

rate the two main mechanisms giving rise to collective

spiking activity — recurrent connectivity and common

inputs — and noted how this connects with decomposi-

tion methods in data analysis [15,16��,17,35]. Moreover,

we are beginning to understand how local and spatial

structures scale up to global activity patterns, and how

they drive network plasticity. Exciting applications of

these theories await, linking anatomical and functional

structure in recorded and reconstructed neural circuits

and elucidating the impact of newly discovered cell types’

intrinsic dynamics and connectivity profiles on population

activity and computations. The theories we presented
www.sciencedirect.com
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rely, however, on the existence of stable activity states

and on simple point-neuron models. Daunting challenges

thus remain, from linking network structure with nonlin-

ear and non-stationary single-neuron and network dynam-

ics to bridging the spatial scales of single-neuron anatomy

with point-neuron models. As the bar ratchets up ever

faster, the field will be watching to see what theories

manage to clear it.
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